Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Tan JS, Jaffar Ali MNB, Gan BK, Tan WS
    Expert Opin Drug Deliv, 2023;20(7):955-978.
    PMID: 37339432 DOI: 10.1080/17425247.2023.2228202
    INTRODUCTION: Viral nanoparticles (VNPs) are virus-based nanocarriers that have been studied extensively and intensively for biomedical applications. However, their clinical translation is relatively low compared to the predominating lipid-based nanoparticles. Therefore, this article describes the fundamentals, challenges, and solutions of the VNP-based platform, which will leverage the development of next-generation VNPs.

    AREAS COVERED: Different types of VNPs and their biomedical applications are reviewed comprehensively. Strategies and approaches for cargo loading and targeted delivery of VNPs are examined thoroughly. The latest developments in controlled release of cargoes from VNPs and their mechanisms are highlighted too. The challenges faced by VNPs in biomedical applications are identified, and solutions are provided to overcome them.

    EXPERT OPINION: In the development of next-generation VNPs for gene therapy, bioimaging and therapeutic deliveries, focus must be given to reduce their immunogenicity, and increase their stability in the circulatory system. Modular virus-like particles (VLPs) which are produced separately from their cargoes or ligands before all the components are coupled can speed up clinical trials and commercialization. In addition, removal of contaminants from VNPs, cargo delivery across the blood brain barrier (BBB), and targeting of VNPs to organelles intracellularly are challenges that will preoccupy researchers in this decade.

  2. Chakraborty S, Vishwas S, Harish V, Gupta G, Paudel KR, Dhanasekaran M, et al.
    Expert Opin Drug Deliv, 2024 Dec;21(12):1771-1792.
    PMID: 39397403 DOI: 10.1080/17425247.2024.2414768
    INTRODUCTION: Alzheimer's disease (AD) stands as significant challenge in realm of neurodegenerative disorder. It is characterized by gradual decline in cognitive function and memory loss. It has already expanded its prevalence to 55 million people worldwide and is expected to rise significantly. Unfortunately, there exists a limited therapeutic option that would mitigate its progression. Repurposing existing drugs and employing nanoparticle as delivery agent presents a potential solution to address the intricate pathology of AD.

    AREAS COVERED: In this review, we delve into utilization of nanoparticular platforms to enhance the delivery of repurposed drugs for treatment of AD. Firstly, the review begins with the elucidation of intricate pathology underpinning AD, subsequently followed by rationale behind drug repurposing in AD. Covered are explorations of nanoparticle-based repurposing of drugs in AD, highlighting their clinical implication. Further, the associated challenges and probable future perspective are delineated.

    EXPERT OPINION: The article has highlighted that extensive research has been carried out on the delivery of repurposed nanomedicines against AD. However, there is a need for advanced and long-term research including clinical trials required to shed light upon their safety and toxicity profile. Furthermore, their scalability in pharmaceutical set-up should also be validated.

  3. Madheswaran T, Chellappan DK, Lye FSN, Dua K
    PMID: 40022612 DOI: 10.1080/17425247.2025.2474693
    INTRODUCTION: Non-small cell lung cancer (NSCLC) continues to pose a considerable health challenge with few therapeutic alternatives. Liquid crystalline nanoparticles (LCN) are nanostructured drug delivery systems made of lipid-based amphiphilic materials that self-assemble into crystalline phases in aqueous environments. LCN have become a promising way to treat NSCLC owing to their specific properties that make them useful for targeted delivery and controlled drug release.

    AREAS COVERED: The review provides a brief overview of the use of LCN in the treatment of NSCLC. It explores their composition, fabrication methods, and characterization processes. The article further addresses several nanoparticle-based approaches for the treatment of NSCLC. Ultimately, it underscores the promise of LCNs as a promising drug delivery system for NSCLC and discusses the obstacles and outlook in this field.

    EXPERT OPINION: LCN represents a promising frontier in the treatment of NSCLC, offering several specific advantages over conventional therapies. Utilizing their intrinsic self-assembly characteristics, LCN provides meticulous control over drug encapsulation, release kinetics, and cellular absorption, which are crucial for improving therapy success. LCN also has the capability for co-delivery of various drugs, facilitating synergistic therapeutic benefits and addressing multidrug resistance, a prevalent issue in NSCLC treatment.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links