Displaying all 18 publications

Abstract:
Sort:
  1. Amin MC, Ahmad N, Pandey M, Abeer MM, Mohamad N
    Expert Opin Drug Deliv, 2015 Jul;12(7):1149-61.
    PMID: 25547588 DOI: 10.1517/17425247.2015.997707
    Supramolecular hydrogels, formed by noncovalent crosslinking of polymeric chains in water, constitute an interesting class of materials that can be developed specifically for drug delivery and biomedical applications. The biocompatibility, stimuli responsiveness to various external factors, and powerful functionalization capacity of these polymeric networks make them attractive candidates for novel advanced dosage form design.
  2. Wong TW, Dhanawat M, Rathbone MJ
    Expert Opin Drug Deliv, 2014 Sep;11(9):1419-34.
    PMID: 24960192 DOI: 10.1517/17425247.2014.924499
    Vaginal infection is widespread and > 80% of females encounter such infections during their lives. Topical treatment and prevention of vaginal infection allows direct therapeutic action, reduced drug doses and adverse effects, convenient administration and improved compliance. The advent of nanotechnology results in the use of nanoparticulate vehicle to control drug release, to enhance dosage form mucoadhesive properties and vaginal retention, and to promote mucus and epithelium permeation for both extracellular and intracellular drug delivery.
  3. Chowdhury EH
    Expert Opin Drug Deliv, 2011 Mar;8(3):389-401.
    PMID: 21314230 DOI: 10.1517/17425247.2011.554817
    Current treatment of malignant tumors relies predominantly on chemotherapy delivering a single antineoplastic drug or a combination of two or more drugs intravenously. Problems with such treatments can include the killing of healthy cells, adverse side effects and chemoresistance. As cancer basically results from different types of mutation leading to the overexpression or suppression of the signaling cascades responsible for cancer cell survival and proliferation, tailor-made approaches capable of interfering precisely with those pathways are the potential revolutionary tools that could pave the way for highly effective cancer therapy.
  4. Chowdhury EH
    Expert Opin Drug Deliv, 2009 Jul;6(7):697-703.
    PMID: 19552613 DOI: 10.1517/17425240903025744
    The nuclear envelope presents a major barrier to transgene delivery and expression using a non-viral vector. Virus is capable of overcoming the barrier to deliver their genetic materials efficiently into the nucleus by virtue of the specialized protein components with the unique amino acid sequences recognizing cellular nuclear transport machinery. However, considering the safety issues in the clinical gene therapy for treating critical human diseases, non-viral systems are highly promising compared with their viral counterparts. This review summarizes the progress on exploring the nuclear traffic mechanisms for the prominent viral vectors and the technological innovations for the nuclear delivery of non-viral DNA by mimicking those natural processes evolved for the viruses as well as for many cellular proteins.
  5. Bose A, Harjoh N, Pal TK, Dan S, Wong TW
    Expert Opin Drug Deliv, 2016 Jan;13(1):143-54.
    PMID: 26307229 DOI: 10.1517/17425247.2015.1080686
    Alginate pellets prepared by the aqueous agglomeration technique experience fast drug dissolution due to the porous pre-formed calcium alginate microstructure.
  6. Ahmad N, Mohd Amin MC, Ismail I, Buang F
    Expert Opin Drug Deliv, 2016 May;13(5):621-32.
    PMID: 26943455 DOI: 10.1517/17425247.2016.1160889
    Oral insulin administration suffers gastrointestinal tract (GIT) degradation and inadequate absorption from the intestinal epithelium resulting in poor bioavailability. This study entails in vitro and in vivo assessment of stimuli-responsive hydrogel microparticles (MPs) in an attempt to circumvent GI barrier and enhance oral insulin bioavailability.
  7. Khan NR, Wong TW
    Expert Opin Drug Deliv, 2016 09;13(9):1209-19.
    PMID: 27212391 DOI: 10.1080/17425247.2016.1193152
    OBJECTIVES: Skin drug retention is required in local treatment of skin cancer. This study investigated the interplay effects of ethosomes and microwave in transdermal drug delivery. Skin pre-treatment by microwave and applied with liquified medicine is deemed to 'cement' the skin thereby raising skin drug deposition.

    METHODS: 5-fluorouracil-loaded ethosomes were prepared and subjected to size, zeta potential, morphology, drug content, drug release and skin permeation tests. The molecular characteristics of untreated, microwave and/or ethosome-treated skins were examined by Fourier transform infrared and raman spectroscopy, thermal and electron microscopy techniques.

    RESULTS: The skin drug retention was promoted using larger ethosomes with negative zeta potentials that repelled anionic lipids of skin and hindered vesicle permeation into deep layers. These ethosomes had low ethanol content. They were less able to fluidize the lipid and defluidize the protein domains at epidermis to enlarge aqueous pores for drug permeation. Pre-treatment of skin by 2450 MHz microwave for 2.5 min further increased skin drug penetration and retention of low ethanol ethosomes and provided lower drug permeation than cases treated for 1.15 min and 5 min. A 2.5 min treatment might be accompanied by specific dermal protein fluidization via C=O moiety which translated to macromolecular swelling, narrowing of intercellular spaces at lower skin layers, increased drug retention and reduced drug permeation.

    CONCLUSION: Ethosomes and microwave synergized to promote skin drug retention.

  8. Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A
    Expert Opin Drug Deliv, 2017 Nov;14(11):1325-1340.
    PMID: 27485144 DOI: 10.1080/17425247.2016.1218462
    INTRODUCTION: Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.
  9. Lee WH, Loo CY, Leong CR, Young PM, Traini D, Rohanizadeh R
    Expert Opin Drug Deliv, 2017 08;14(8):937-957.
    PMID: 27759437 DOI: 10.1080/17425247.2017.1247804
    INTRODUCTION: The effectiveness of conventional cancer chemotherapy is hampered by the occurrence of multidrug resistance (MDR) in tumor cells. Although many studies have reported the development of novel MDR chemotherapeutic agents, clinical success is lacking owing to the high associated toxicity. Nanoparticle-based delivery of chemotherapeutic drugs has emerged as alternative approach to treat MDR cancers via exploitation of leaky vasculature in the tumor microenvironment. Accordingly, functionalization of nanoparticles with target specific ligands can be employed to achieve significant improvements in the treatment of MDR cancer. Areas covered: This review focuses on the recent advances in the functionalization of nanocarriers with specific ligands, including antibodies, transferrin, folate, and peptides to overcome MDR cancer. The limitations of effective ligand-functionalized nanoparticles as well as therapeutic successes in ligand targeting are covered in the review. Expert opinion: Targeting MDR tumors with ligand-functionalized nanoparticles is a promising approach to improve the treatment of cancer. With this approach, higher drug concentrations at targeted sites would be achieved with lower dosage frequencies and reduced side effects in comparison to existing formulations of chemotherapeutic drugs. However, potential toxicities and immunological responses to ligands should be carefully reviewed for viable options in for future MDR cancer treatment.
  10. Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P
    Expert Opin Drug Deliv, 2018 12;15(12):1223-1247.
    PMID: 30422017 DOI: 10.1080/17425247.2018.1547280
    INTRODUCTION: Pulmonary drug delivery is organ-specific and benefits local drug action for lung cancer. The use of nanotechnology and targeting ligand enables cellular-specific drug action. Combination approaches increase therapeutic efficacy and reduce adverse effects of cancer chemotherapeutics that have narrow therapeutic index window and high cytotoxicity levels. The current progress of inhaled cancer chemotherapeutics has not been examined with respect to targeting strategy and clinical application potential.

    AREAS COVERED: This review examines the state of the art in passive (processing and formulation) and active (targeting ligand and receptor binding) technologies in association with the use of nanocarrier to combat lung cancer. It highlights routes to equip nanocarrier with targeting ligands as a function of the chemistry of participating biomolecules and challenges in inhalational nanoproduct development and clinical applications. Both research and review articles were examined using the Scopus, Elsevier, Web of Science, Chemical Abstracts, Medline, CASREACT, CHEMCATS, and CHEMLIST database with the majority of information retrieved between those of 2000-2018.

    EXPERT COMMENTARY: The therapeutic efficacy of targeting ligand-decorated nanocarriers needs to be demonstrated in vivo in the form of finished inhalational products. Their inhalation efficiency and medical responses require further examination. Clinical application of inhaled nanocancer chemotherapeutics is premature.

  11. Bonde GV, Yadav SK, Chauhan S, Mittal P, Ajmal G, Thokala S, et al.
    Expert Opin Drug Deliv, 2018 05;15(5):495-507.
    PMID: 29521126 DOI: 10.1080/17425247.2018.1449832
    INTRODUCTION: Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation.

    AREAS COVERED: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose.

    EXPERT OPINION: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.

  12. Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, et al.
    Expert Opin Drug Deliv, 2020 12;17(12):1737-1765.
    PMID: 32878492 DOI: 10.1080/17425247.2020.1819237
    Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
  13. Rathore C, Rathbone MJ, Chellappan DK, Tambuwala MM, Pinto TJA, Dureja H, et al.
    Expert Opin Drug Deliv, 2020 04;17(4):479-494.
    PMID: 32077770 DOI: 10.1080/17425247.2020.1730808
    Introduction: Thymoquinone (TQ), 2-isopropyl-5-methylbenzo-1, 4-quinone, the main active constituent of Nigella sativa (NS) plant, has been proven to be of great therapeutic aid in various in vitro and in vivo conditions. Despite the promising therapeutic activities of TQ, this molecule is not yet in the clinical trials, restricted by its poor biopharmaceutical properties including photo-instability.Area covered: This review compiles the different types of polymeric and lipidic nanocarriers (NCs), encapsulating TQ for their improved oral bioavailability, and augmented in vitro and in vivo efficacy, evidenced on various pathologies. Furthermore, we provide a comprehensive overview of TQ in relation to its encapsulation approaches advancing the delivery and improving the efficacy of TQ.Expert opinion: TQ was first identified in the essential oil of Nigella sativa L. black seed. TQ has not been used in formulations because it is a highly hydrophobic drug having poor aqueous solubility. To deal with the poor physicochemical problems associated with TQ, various NCs encapsulating TQ have been tried in the past. Nevertheless, these NCs could be impending in bringing forth this potential molecule to clinical reality. This will also be beneficial for a large research community including pharmaceutical & biological sciences and translational researchers.
  14. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

  15. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Awasthi A, et al.
    Expert Opin Drug Deliv, 2021 04;18(4):427-448.
    PMID: 33356647 DOI: 10.1080/17425247.2021.1846517
    Introduction: Diabetic neuropathy (DN) is one of the major complications arising from hyperglycaemia in diabetic patients. In recent years polyphenols present in plants have gained attention to treat DN. The main advantages associated with them are their action via different molecular pathways to manage DN and their safety. However, they failed to gain clinical attention due to challenges associated with their formulation development such as lipophilicity,poor bioavailability, rapid systemic elimination, and enzymatic degradation.Area covered: This article includes different polyphenols that have shown their potential against DN in preclinical studies and the research carried out towards development of their nanoformulations in order to overcome aforementioned issues.Expert opinion: In this review various polyphenol based nanoformulations such as nanospheres, self-nanoemulsifying drug delivery systems, niosomes, electrospun nanofibers, metallic nanoparticles explored exclusively to treat DN are discussed. However, the literature available related to polyphenol based nanoformulations to treat DN is limited. Moreover, these experiments are limited to preclinical studies. Hence, more focus is required towards  development of nanoformulations using simple and single step process as well as inexpensive and non-toxic excipients so that a stable, scalable, reproducible and non-toxic formulation could be achieved and clinical trials could be initiated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links