Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Norsahperi NMH, Danapalasingam KA
    ISA Trans, 2020 Jul;102:230-244.
    PMID: 32169293 DOI: 10.1016/j.isatra.2020.03.001
    This paper examines two approaches in tuning fractional order proportional-integral-differential (FOPID) control named as neuro-based FOPID (NNFOPID) and particle swarm-based FOPID (PSOFOPID) for pitch control of a Twin Rotor Aerodynamic System (TRAS). For the neuro-based FOPID control, the innovations are the modification of output equation in the artificial neural network and the implementation of the Rectified Linear Unit (ReLU) activation function. The advantages of the proposed approach are a lighter network and the ability to tune more practical controller parameters without a deep knowledge of the system to achieve a satisfying pitch tracking response. As for the particle swarm-based FOPID control, the application of PSO with spreading factor algorithm is extended for tuning the FOPID controller gains and the innovation here is a new procedure in setting the initial search range. The important advantages of this proposed swarm-based algorithm are the avoidance of being trapped in local optima and reduction of the search area respectively. The performances of the proposed controllers are proven by extensive simulations and experimental verifications based on five standard criteria: square-wave characteristics, reference to disturbance ratio, evaluation time, energy consumption of the control signal and tracking performance. The performances of the proposed controllers are compared against an optimised PID control in three system conditions, namely Case I) without coupling effect and wind disturbance, Case II) with coupling effect only and Case III) with wind disturbance only. Together, this study finds that NNFOPID control offers an accurate system positioning by a 34% reduction in steady-state error with the lowest energy consumption and minimum evaluation time in Case II. In terms of the tracking performance and robustness for Case II, the superiority of PSOFOPID control is confirmed by a 27% reduction in the tracking error and the lowest oscillation value. The experimental results also validate the robustness and energy consumption of both controllers in Case III. It is envisaged that the proposed control designs can be very useful in tuning FOPID controller gains for high performance, low energy, and robust aerodynamics systems.
  2. Talib MHN, Ibrahim Z, Abd Rahim N, Zulhani R, Nordin N, Farah N, et al.
    ISA Trans, 2020 Oct;105:230-239.
    PMID: 32475537 DOI: 10.1016/j.isatra.2020.05.040
    Fuzzy Logic Speed Controller (FLSC) has been widely used for motor drive due to its robustness and its non-reliance to real plant parameters. However, it is computationally expensive to be implemented in real-time and prone to the fuzzy rules' selection error which results in the failure of the drive's system. This paper proposes an improved simplified rules method for Fuzzy Logic Speed Controller (FLSC) based on the significant crisp output calculations to address these issues. A systematic procedure for the fuzzy rules reduction process is first described. Then, a comprehensive evaluation of the activated crisp output data is presented to determine the fuzzy dominant rules. Based on the proposed method, the number of rules was significantly reduced by 72%. The simplified FLSC rule is tested on the Induction Motor (IM) drives system in which the real-time implementation was carried out in the dSPACE DS1103 controller environment. The simulation and experimental results based on the proposed FLSC have proved the workability of the simplified rules without degrading the motor performance.
  3. Suid MH, Ahmad MA
    ISA Trans, 2021 Dec 16.
    PMID: 34991880 DOI: 10.1016/j.isatra.2021.11.037
    Automatic Voltage Regulator (AVR) is fabricated to sustain the voltage level of a synchronous generator spontaneously. Several control strategies have been introduced into the AVR system with the aim of gaining a better dynamic response. One of the most universally utilized controllers is the Proportional-Integral-Derivative (PID) controller. Despite the PID controller having a relatively high dynamic response, there are still further possibilities to improve in order to obtain more appropriate responses. This paper designed a sigmoid-based PID (SPID) controller for the AVR system in order to allow for an accelerated settling to rated voltage, as well as increasing the control accuracy. In addition, the parameters of the proposed SPID controller are obtained using an enhanced self-tuning heuristic optimization method called Nonlinear Sine Cosine Algorithm (NSCA), for achieving a better dynamic response, particularly with regards to the steady-state errors and overshoot of the system. A time-response specifications index is used to validate the proposed SPID controller. The obtained simulation results revealed that the proposed method was not only highly effective but also greatly improved the AVR system transient response in comparison to those with the modern heuristic optimization based PID controllers.
  4. Tran CD, Ibrahim R, Asirvadam VS, Saad N, Sabo Miya H
    ISA Trans, 2018 Apr;75:236-246.
    PMID: 29478749 DOI: 10.1016/j.isatra.2017.12.010
    The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID.
  5. Khan Q, Akmeliawati R, Bhatti AI, Khan MA
    ISA Trans, 2017 Jan;66:241-248.
    PMID: 27884392 DOI: 10.1016/j.isatra.2016.10.017
    This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical underactuated systems which can be transformed into the so-called regular form. The novelty of the proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the considered class. Having established sliding mode along the designed manifold, the close loop dynamics become finite time stable which, consequently, result in high precision. In addition, the adverse effects of the chattering phenomenon are reduced via strong reachability condition and the robustness of the system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an inverted pendulum is presented to demonstrate the applicability of the proposed technique.
  6. Haruna A, Mohamed Z, Efe MÖ, Abdullahi AM
    ISA Trans, 2023 Oct;141:470-481.
    PMID: 37507325 DOI: 10.1016/j.isatra.2023.07.002
    In this paper, the energy efficiency of the widespread application of backstepping control to a class of nonlinear motion systems is investigated. A Switched Step Integral Backstepping Control (SSIBC) scheme is introduced to improve immunity to measurement noise and to increase the energy efficiency of conventional backstepping in practice. The SSIBC is realized by switching between two candidate controllers obtained at different steps of the iterative backstepping design process. A bi-state dependent hysteresis rule is developed to supervise stable switching between the different regimes in the presence of noise. The proposed method is experimentally verified on a MIMO twin rotor laboratory helicopter involving coupled nonlinear dynamics, inaccessible states and uncertainties. Experimental results show that in addition to a reduction in power consumption, the SSIBC reduces saturation of the control signal and visible motor jerking in contrast with conventional backstepping. Additional comparisons with a previously proposed optimized decoupling PID controller also show significant improvement in precision achieved with higher energy efficiency. Experimental results obtained with the introduction of an external disturbance into the system also show the robustness of the proposed SSIBC.
  7. Sivaraju SS, Senthilkumar T, Sankar R, Anuradha T, Usha S, Bin Musirin I
    ISA Trans, 2024 Apr;147:215-226.
    PMID: 38402102 DOI: 10.1016/j.isatra.2024.01.034
    A hybrid technique is proposed in this manuscript for the optimal design of an induction motor (IM) drive for the dynamic load profiles during torque and flux control. The proposed hybrid method combines a Ladder-Spherical-Evolution-Search-Algorithm (LSE) and a recalling-enhanced recurrent-neural network (RERNN), which is called an LSE-RERNN technique. The major objective of the proposed method is to minimize IM losses while maintaining control over speed and torque. The proposed method effectively tunes the gain parameter of the PI controller for flux and torque regulation. The LSE methodgenerates a set of gain parameters optimally predicted by RERNN. The method reduces losses without prior knowledge of load profiles, achieving energy savings for steady-state optimum flux. The performance of the proposed technique is done in the MATLAB and is compared with different existing techniques. The value of the proposed method for the mean is 0.328, the standard deviation (SD) is 0.00334, and the median is 0.4173. The loss of the proposed method is much less than 0.3 W while compared to different existing approaches. Moreover, the computation time of the proposed approach is lesser than the existing techniques.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links