Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Mohd Adnan LH, Abu Bakar NH, Simbak N, Mohamad N, Ismail R, Ahmad NZ, et al.
    Iran J Basic Med Sci, 2020 Jul;23(7):849-852.
    PMID: 32774804 DOI: 10.22038/ijbms.2020.41678.9841
    Opioids, amphetamines, and other types of substances have been widely abused around the world. Opioid dependence and tolerance are two distinct phenomena that have been associated with substance abuse issues. The management of its adverse consequences is becoming more challenging. More and more people are treated in Methadone Maintenance Therapy (MMT) program yet the issues are still unresolved. Researchers are continuing to study the best formulation in treating opioid dependent people starting with modern and alternative drug therapies. Since 2008 , thymoquinone (TQ) has been extensively studied by researchers around the world and has emerged to be a new potential drug candidate in managing substance abuse issues. Thus, the aim of this article is to review the effects that TQ may have on opioid dependent subjects and other abused substances such as amphetamine may have been studied. All of the articles from 2008 until 2019 involving the effects of TQ on substance abuse from Google Scholar®, Scopus®, and Pubmed® databases have been searched and reviewed. The keywords used were thymoquinone, opioid dependence, amphetamine, and Nigella sativa. The research results also have been discussed in this article. Based on the research conducted, TQ was effective in reducing the adverse health consequences associated with substance abuse such as withdrawal symptoms, tolerance, and cell damages. It is concluded that TQ could be a potential drug that can be complemented with the currently available drugs in substance abuse therapies.
  2. Zakaria S, Mat-Husain SZ, Ying-Hwey K, Xin-Kai K, Mohd-Badawi A, Abd-Ghani NA, et al.
    Iran J Basic Med Sci, 2017 Dec;20(12):1360-1367.
    PMID: 29238472 DOI: 10.22038/IJBMS.2017.9610
    Objectives: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats.

    Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I) control group; (II) alcohol (3g/kg) + normal saline; (III) alcohol (3g/kg) + olive oil; (IV) alcohol (3g/kg) + alpha-tocopherol (60mg/kg) and (V) alcohol (3g/kg) + palm vitamin E (60mg/kg). The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar) and left tibia bones were harvested for bone mineral measurement.

    Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young's modulus) and bone minerals (bone calcium and magnesium) compared to control group (P<0.05). Palm vitamin E was able to improve bone biomechanical parameters by increasing the maximum force, ultimate stress and Young's modulus (P<0.05) while alpha-tocopherol was not able to. Both alpha-tocopherol and palm vitamin E were able to significantly increase tibia calcium and magnesium content while only alpha-tocopherol caused significant increase in lumbar calcium content (P<0.05).

    Conclusion: Both palm vitamin E and alpha-tocopherol improved bone mineral content which was reduced by alcohol. However, only palm vitamin E was able to improve bone strength in alcohol treated rats.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links