Displaying publications 21 - 40 of 77 in total

Abstract:
Sort:
  1. Revathi M, Sivagaami Sundari G, Ahmed Basha C, Alam M, Sagadevan S, Ahmad N
    J Nanosci Nanotechnol, 2020 10 01;20(10):6547-6554.
    PMID: 32385012 DOI: 10.1166/jnn.2020.18562
    This investigation aims at the reclamation of Cr(VI) from synthetic electroplating industrial effluent by electroextraction process namely electrochemical ion exchange (EIX). An electrochemical ion exchange reactor of desired dimensions was fabricated with the help of ion-permeable membranes, stainless steel cathode and PbO₂ coated Ti expanded mesh anode. The performance of the reactor was studied in batch recirculation mode, continuous flow mode at different experimental conditions. The influence of various experimental factors, for instance, initial metal ion concentration (20, 300, 1000 mg/L of Cr(VI)), applied voltages (2.5 V, 5 V, 7.5 V, 10 V) and flow rates of the process stream (2, 4, 6, 8, 10, 12 and 14 ml/min) on removal/reclamation efficiency was deliberated. For comparison purposes, an electrodialysis process was conducted at the same optimal conditions. It was found that the EIX process with three compartments has more removal efficiency at optimum experimental conditions than the electrodialysis process. The continuous flow process of the reactor with 300 mg/L of Cr(VI) as inlet concentration has studied to predict the breakeven point of the reactor. It was noted that Cr(VI) ion concentration in the treated wastewater is almost zero up to the discharge of 20 liters of treated rinse water.
  2. Ng JC, Tan CY, Ong BH, Matsuda A, Basirun WJ, Tan WK, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7236-7243.
    PMID: 31039881 DOI: 10.1166/jnn.2019.16717
    Small sized electrocatalysts, which can be obtained by rapid nucleation and high supersaturation are imperative for outstanding methanol oxidation reaction (MOR). Conventional microwave synthesis processes of electrocatalysts include ultrasonication, stirring, pH adjustment, and microwave irradiation of the precursor mixture. Ethylene glycol (EG), which serves as a reductant and solvent was added during the ultrasonication or stirring stage. However, this step and pH adjustment resulted in unintended multi-stage gradual nucleation. In this study, the microwave reduction approach was used to induce rapid nucleation and high supersaturation in order to fabricate small-sized reduced graphene oxide-supported palladium (Pd/rGO) electrocatalysts via the delayed addition of EG, elimination of the pH adjustment step, addition of sodium carbonate (Na₂CO₃), prior microwave irradiation of the EG mixed with Na₂CO₃, and addition of room temperature precursor mixture. Besides its role as a second reducing agent, the addition of Na₂CO₃ was primarily intended to generate an alkaline condition, which is essential for the high-performance of electrocatalysts. Moreover, the microwave irradiation of the EG and Na₂CO₃ mixture generated highly reactive free radicals that facilitate rapid nucleation. Meanwhile, the room temperature precursor mixture increased supersaturation. Results showed improved electrochemically active surface area (78.97 m² g-1, 23.79% larger), MOR (434.49 mA mg-1, 37.96% higher) and stability.
  3. Umar S, Sulaiman F, Abdullah N, Mohamad SN
    J Nanosci Nanotechnol, 2020 12 01;20(12):7569-7576.
    PMID: 32711628 DOI: 10.1166/jnn.2020.18616
    Conventional thermal fluids with suspended nanoparticles, known as nanofluids, have been developed for heat transfer applications. Heat transfer loss could be reduced significantly if the thermophysical properties of the heat transfer fluid are improved, which to some extent, could reduce the present global environmental challenges associated with energy utilization, such as climate change and global warming. In this work, the role of the concentration of sodium dodecyl-benzene sulfonate (SDBS) in the stability of Al₂O₃/bio-oil nanofluid is investigated the zeta potential value, and its implications to the viscosity and thermal conductivity of the nanofluid are explored. The bio-oil based nanofluid is fixed using a two-step method in which the prepared base fluid is added with 13-nm alumina nanoparticles powder. Various weight fractions of SDBS (0.1, 0.2, 0.4, 0.6, and 1.0 wt%) are used for both 0.1 and 0.2 wt% Al₂O₃ to investigate the significance of the stability of a nanofluid on its thermal conductivity and viscosity. Results indicate that a stable nanofluid has reduced viscosity and increased thermal conductivity.
  4. Ibrahim MZ, Norashikin MZ
    J Nanosci Nanotechnol, 2010 Sep;10(9):6211-5.
    PMID: 21133176
    This paper reports the performance of two different artificial neural networks (ANN), Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) compared to conventional software for prediction of the pore size of the asymmetric polyethersulfone (PES) ultrafiltration membranes. ANN has advantages such as incredible approximation, generalization and good learning ability. The MLP are well suited for multiple inputs and multiple outputs while RBF are powerful techniques for interpolation in multidimensional space. Three experimental data sets were used to train the ANN using polyethylene glycol (PEG) of different molecular weights as additives namely as PEG 200, PEG 400 and PEG 600. The values of the pore size can be determined manually from the graph and solve it using mathematical equation. However, the mathematical solution used to determine the pore size and pore size distribution involve complicated equations and tedious. Thus, in this study, MLP and RBF are applied as an alternative method to estimate the pore size of polyethersulfone (PES) ultrafiltration membranes. The raw data needed for the training are solute separation and solute diameter. Values of solute separation were obtained from the ultrafiltration experiments and solute diameters ware calculated using mathematical equation. With the development of this ANN model, the process to estimate membrane pore size could be made easier and faster compared to mathematical solutions.
  5. Razali MH, Noor AFM, Yusoff M
    J Nanosci Nanotechnol, 2020 02 01;20(2):965-972.
    PMID: 31383093 DOI: 10.1166/jnn.2020.16944
    In this study, a series of copper-ion-doped titanium dioxide (Cu-ion-doped TiO₂) nanotubes (NTs) were synthesized via a hydrothermal method by the concentration variation of doped Cu ions (0.00, 0.50, 1.00, 2.50, and 5.00 mmol). In addition, the samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen gas adsorption measurements, and ultraviolet-visible (UV-Vis) diffuse-reflectance spectroscopy. The photocatalytic activity of the Cu-iondoped TiO₂ NTs was investigated for the degradation of methyl orange (MO) under sunlight. The results obtained from the structural and morphological studies revealed that, at low concentrations of Cu-doped TiO₂ NTs, Cu is incorporated into the interstitial positions of the TiO₂ lattice, affording a new phase of TiO₂ (hexagonal) instead of the anatase TiO₂ (tetragonal) observed for undoped TiO₂ NTs. EDX analysis confirmed the presence of Cu in the TiO₂-based photocatalyst. All of the investigated samples exhibited a hollow fibrous-like structure, indicative of an NT morphology. The inner and outer diameters of the NTs were 4 nm and 10 nm, respectively. The photocatalysts exhibited a large surface area due to the NT morphology and a type IV isotherm and H3 hysteresis, corresponding to the mesopores and slit-shaped pores. The Cu-ion-doped TiO₂ NTs were excited by sunlight because of their low bandgap energy; and after the incorporation of Cu ions into the interstitial positions of the TiO₂ lattice, the NTs exhibited high visible-light activity owing to the low bandgap.
  6. Lai CW, Sreekantan S, Lockman Z
    J Nanosci Nanotechnol, 2012 May;12(5):4057-66.
    PMID: 22852347
    Uniformly sized TiO2 nanotubes with high aspect ratios were synthesised on a large substrate (100 mm x 100 mm) via the bubbling system through anodisation of Ti in ethylene glycol containing 5 wt% NH4F and 5 wt% H2O2. The benefits of bubbling system in producing uniformly sized TiO2 nanotubes throughout the Ti foil are illustrated. Moreover, the effects of applied voltage and fluoride content on the resulting nanotubes were also considered. Such uniform sized TiO2 nanotubes are a key to produce hydrogen efficiently using PEC cell. The results show higher photocurrent responses for the high aspect ratio, uniform TiO2 nanotubes because of excellent interfacial electron transfer.
  7. Rozi SKM, Shahabuddin S, Manan NSA, Mohamad S, Kamal SAA, Rahman SA
    J Nanosci Nanotechnol, 2018 May 01;18(5):3248-3256.
    PMID: 29442825 DOI: 10.1166/jnn.2018.14699
    The present work highlights the facile synthesis of hydrophobic palm fatty acid functionalized Fe3O4 nanoparticles (MNP-FA) for the efficient removal of oils from the surface of water. An intense hydrophobic layer was introduced on the surface of Fe3O4 nanoparticles functionalized by the palm fatty acid obtained from the hydrolysis of palm olein. Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Energy dispersive X-ray spectroscopy (EDX) and water contact angle analysis (WCA) measurements were used to characterize the newly fabricated palm fatty acid adorned magnetic Fe3O4 nanoparticles (MNP-FA). The obtained results confirmed the successful synthesis of palm fatty acid-functionalized magnetic nanoparticles. Oil removal tests performed with MNP-FA revealed that this newly prepared material could selectively adsorb lubricating oil up to 3.5 times of the particles' weight while completely repelling water. The main parameters affecting the adsorption of oil i.e., sorption time, mass of sorbent and pH of water were optimized.
  8. Hashim Y
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1199-1201.
    PMID: 29448557 DOI: 10.1166/jnn.2018.13956
    This study explores optimization of resistance load (R-Load) of four silicon nanowire transistor (SiNWT)-based static random-access memory (SRAM) cell. Noise margins and inflection voltage of butterfly characteristics with static power consumption of SRAM cell are used as limiting factors in this optimization. Range of R-Load used in this study was 20-1000 KΩ with Vdd = 1 V. Results indicate that optimization depends critically on resistance load value. The optimized range of R-Load is 100-200 KΩ.
  9. Rahmandoust M, Ochsner A
    J Nanosci Nanotechnol, 2012 Oct;12(10):8129-36.
    PMID: 23421189
    In this study, Single-Walled and Multi-Walled Carbon Nanotubes in their perfect forms were investigated by the Finite Element Method. Details on the modeling of the structure are provided in this paper, including the appropriate elements, the element properties that should be defined based on the atomic structure of Carbon Nanotubes and the corresponding chemical bonds. Non-covalent van der Waals interactions between two neighbor atoms as well as the required approximations for the modeling of the structures with this kind of interaction are also presented. Specific attention was dedicated to the necessity of using some time- and energy-consuming steps in the simulation process. First, the effect of simulating only a single ring of the whole structure is studied to find out if it would represent the same mechanical behavior as the long structure. Results show that by applying an appropriate set of boundary conditions, the stiffness of the shortened structure is practically equal to the long perfect structure. Furthermore, Multi-Walled Carbon Nanotube structures with and without defining the van der Waals force are studied. Based on the observations, applying the van der Waals force does not significantly influence the obtained Young's modulus of the structure in the case of a uniaxial tensile test.
  10. Nasir N, Yahya N, Kashif M, Daud H, Akhtar MN, Zaid HM, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2551-4.
    PMID: 21449424
    This is our initial response towards preparation of nano-inductors garnet for high operating frequencies strontium iron garnet (Sr3Fe5O12) denoted as SrIG and yttrium iron garnet (Y3Fe5O12) denoted as YIG. The garnet nano crystals were prepared by novel sol-gel technique. The phase and crystal structure of the prepared samples were identified by using X-ray diffraction analysis. SEM images were done to reveal the surface morphology of the samples. Raman spectra was taken for yttrium iron garnet (Y3Fe5O12). The magnetic properties of the samples namely initial permeability (micro), relative loss factor (RLF) and quality factor (Q-Factor) were done by using LCR meter. From the XRD profile, both of the Y3Fe5O12 and Sr3Fe5O12 samples showed single phase garnet and crystallization had completely occurred at 900 degrees C for the SrIG and 950 degrees C for the YIG samples. The YIG sample showed extremely low RLF value (0.0082) and high density 4.623 g/cm3. Interesting however is the high Q factor (20-60) shown by the Sr3Fe5O12 sample from 20-100 MHz. This high performance magnetic property is attributed to the homogenous and cubical-like microstructure. The YIG particles were used as magnetic feeder for EM transmitter. It was observed that YIG magnetic feeder with the EM transmitter gave 39% higher magnetic field than without YIG magnetic feeder.
  11. Suguna S, Shankar S, Jaganathan SK, Manikandan A
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1019-1026.
    PMID: 29448527 DOI: 10.1166/jnn.2018.13960
    Ni-doped cobalt aluminate NixCo1-xAl2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) spinel nanoparticles were successfully synthesized by a simple microwave combustion method using urea as the fuel and as well as reducing agent. X-ray powder diffraction (XRD) was confirmed the formation of single phase, cubic spinel cobalt-nickel aluminate structure without any other impurities. Average crystallite sizes of the samples were found to be in the range of 18.93 nm to 21.47 nm by Scherrer's formula. Fourier transform infrared (FT-IR) spectral analysis was confirmed the corresponding functional groups of the M-O, Al-O and M-Al-O (M = Co and Ni) bonds of spinel NixCo1-xAl2O4 structure. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images was confirmed the particle like nanostructured morphology. Energy band gap (Eg) value was calculated using UV-Visible diffuse reflectance spectra (DRS) and the Eg values increased with increasing Ni2+ dopant from x = 0.2 (3.58 eV) to x = 1.0 (4.15 eV). Vibrating sample magnetometer (VSM) measurements exposed that undoped and Ni-doped CoAl2O4 samples have superparamagnetic behavior and the magnetization (Ms) values were increased with increasing Ni2+ ions. Spinel NixCo1-xAl2O4 samples has been used for the catalytic oxidation of benzyl alcohol into benzaldehyde and was found that the sample Ni0.6Co0.4Al2O4 showed higher conversion 94.37% with 100% selectivity than other samples, which may be due to the smaller particle size and higher surface area.
  12. Hashim Y, Sidek O
    J Nanosci Nanotechnol, 2012 Sep;12(9):7101-4.
    PMID: 23035439
    This paper shows the effect of the dimensions of nanowires on threshold voltage, ON/OFF current ratio, and sub-threshold slope. These parameters are critical factors of the characteristics of silicon nanowire transistors. The MuGFET simulation tool was used to investigate the characteristics of a transistor. Current-voltage characteristics with different dimensions were simulated. Results show that long nanowires with low diameter and oxide thickness tend to have the best transistor characteristics.
  13. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
  14. Ridha NJ, Umar AA, Alosfur F, Jumali MH, Salleh MM
    J Nanosci Nanotechnol, 2013 Apr;13(4):2667-74.
    PMID: 23763142
    Porous ZnO nanostructures have become the subject of research interest--due to their special structures with high surface to volume ratio that may produce peculiar properties for use in optoelectronics, sensing and catalysis applications. A microwave-assisted hydrothermal method has been used for effecting the formation of porous nanostructure of metaloxide materials, such as CoO and SnO2, in solution. Here, by adopting the unique performance of a microwave-assisted-hydrothermal method, we realized the formation of highly porous ZnO nanostructures directly on the substrate surface, instead of in solution. The effects of the ambient reaction conditions and the microwave power on the structural growth of the ZnO nanostructures were studied in detail. Two different ambient reaction conditions, namely refluxed and isolated in autoclave systems, were used in this work. Porous ZnO (PZO) nanostructures with networked-nanoflakes morphology is the typical result for this approach. It was found that the morphology of the ZnO nanostructures was strongly depended on the ambient conditions of the reaction; the isolated-autoclave system may produce reasonably high porous ZnO that is constituted by vertically oriented grainy-flakes structures, whereas the refluxed system produced solid vertically-oriented flake structures. The microwave power did not influence the structural growth of the ZnO. It was also found that both the ambient reaction conditions and the microwave power used influenced the crystallographic orientation of the PZO. For instance, PZO with dominant (002) Bragg plane could be obtained by using refluxed system, whereas PZO with dominant (101) plane could be realized if using isolated system. For the case of microwave power, the crystallographic orientation of PZO prepared using both systems changed from dominant (002) to (101) planes if the power was increased. The mechanism for the formation of porous ZnO nanostructures using the present approach is proposed. The ZnO nanostructures prepared using the present method should find an extensive use in currently existing application due to its property of reasonably high porosity.
  15. Rahman ML, Puah PY, Sarjadi MS, Arshad SE, Musta B, Sarkar SM
    J Nanosci Nanotechnol, 2019 09 01;19(9):5796-5802.
    PMID: 30961741 DOI: 10.1166/jnn.2019.16538
    Ion-imprinting polymers (IIPs) materials draw the great recognition because of the powerful selectivity to the desired metal ions. Therefore, the ion-imprinting polymer (Ce-IIP) was prepared by using cerium metal with amidoxime ligand as the complexing agent, in addition ethylene glycol dimethacrylate (EGDMA) and 2,2-azobisisobutyronitrile (AIBN) are crosslinking agent and free radical initiator, respectively. Aqueous HCl was applied to leach the cerium ions from the imprinted polymer for the creation of cavities of template, which is utilized for further cerium ions adsorption with high selectivity. The Ce-IIP was characterized by using ICP-MS, FE-SEM and also solid state analysis by UV-vis NIR spectroscopy. FT-IR study confirmed the complexation of the Ce-IIP was successful. The optimum pH was found to be 6 and the highest adsorption capacity was estimated about 145 mg g-1. Thus, the prepared Ce-IIP gave very good selectivity to cerium ions in the presence of lanthanide ions and also Ce-IIP can be reused 10 times without a substantial loss in adsorption capacity.
  16. Kamaruddin SA, Sahdan MZ, Chan KY, Rusop M, Saim H
    J Nanosci Nanotechnol, 2010 Oct;10(10):6419-23.
    PMID: 21137740
    Zinc oxide (ZnO) is an emerging optoelectronic material in large area electronic applications due to its various functional behaviors. We present the fabrication and the characterization of ZnO nanorods. The ZnO nanorods were synthesized using sol-gel hydrothermal technique on oxidized silicon substrates. Different post-annealing temperatures were explored in the sol-gel hydrothermal synthesis of the ZnO nanorods. The surface morphology of the ZnO nanorods were examined using scanning electron microscope (SEM). In order to investigate the structural properties, the ZnO nanorods were measured using X-ray diffractometer (XRD). The optical properties were measured using ultraviolet-visible (UV-Vis) spectroscopy. The influence of the post-annealing temperature on the realized ZnO nanorods will be revealed and discussed in this paper.
  17. Yan L, Yu J, Zhong Y, Gu Y, Ma Y, Li W, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1605-1612.
    PMID: 31492322 DOI: 10.1166/jnn.2020.17340
    The present study focuses on the microstructural and bioactive properties evolution in selective laser melting (SLM) β titanium alloys. We have applied cross-scan strategy for improving mechanical properties and lower elastic modulus of SLMed Ti-20Mg-5Ta alloys which has been shown to be altering the microstructure and refining the grain size. The cross-scan strategy can refine the microstructure and induce various deformation textures in contrast to the conventional scan strategy. The microstructures of Ti-20Mg-5Ta alloys indicate that the cross-scan strategy will yield the best mechanical properties and lower elastic modulus. The corrosion behavior of the Ti-20Mg-5Ta alloys was studied during immersion in an acellular simulated body fluid (SBF) at 37±0.50 °C for 28 days. Both the mechanical and bioactive properties showed that the novel Ti-20Mg-5Ta alloys should be ideal for bone implants.
  18. Sagadevan S, Vennila S, Suraiya Begum SN, Wahab YA, Hamizi NAB, Marlinda AR, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5452-5457.
    PMID: 32331117 DOI: 10.1166/jnn.2020.17855
    Nanostructure materials are of interest in last few decades due to their unique size-dependent physio-chemical properties. In this paper, zinc oxide (ZnO) and barium doped ZnO nanodisks (NDs) were synthesized using sonochemical method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), UV-vis absorption and dielectric measurements. The XRD and FTIR studies confirm the crystalline nature of ZnO NDs, and the average crystallite size was found to be ~25 nm for pure ZnO and ~22 nm for Ba doped ZnO NDs. SEM study confirmed the spherical shaped ZnO NDs with average sizes in the range of 20-30 nm. The maximum absorbance was obtained in the 200-500 nm regions with a prominent peak absorbance were observed by UV-vis spectra. The corresponding band gap for ZnO NDs and Ba doped ZnO NDs were calculated using Tauc's plot and was found to be 3.12 and 3.04, respectively. The conductivity and dielectric measurements as a function of frequency have been studied.
  19. Kafi AKM, Alim S, Jose R, Yusoff MM
    J Nanosci Nanotechnol, 2019 04 01;19(4):2027-2033.
    PMID: 30486943 DOI: 10.1166/jnn.2019.15465
    A multiporous nanofiber (MPNFs) of SnO₂ and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO₂ that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO₂ exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO₂ are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO₂, a direct electron transfer between the protein's redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at -0.29 V and -0.18 V and found to be sensitive to H₂O₂. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H₂O₂. The catalysis currents increased linearly to the H₂O₂ concentration in a wide range of 5.0×10-6-1.5×10-4 M. Overall experimental results show that MPNFs of SnO₂ has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO₂ is a very promising candidate for future biosensor applications.
  20. Ahmad MS, Cheng CK, Singh S, Ong HR, Abdullah H, Hong CS, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5916-5927.
    PMID: 32331197 DOI: 10.1166/jnn.2020.18549
    Glycerol electro-oxidation offers a green route to produce the high value added chemicals. Here in, we report the glycerol electro-oxidation over a series of multi walled carbon nano tubes supported monometallic (Pt/CNT and Pd/CNT) and bimetallic (Pt-Pd/CNT) catalysts in alkaline medium. The cyclic voltammetry, linear sweep voltammetry and chronoamperometry measurements were used to evaluate the activity and stability of the catalysts. The Pt-Pd/CNT electrocatalyst exhibited the highest activity in terms of higher current density (129.25 A/m²) and electrochemical surface area (382 m²/g). The glycerol electro-oxidation products formed at a potential of 0.013 V were analyzed systematically by high performance liquid chromatography. Overall, six compounds were found including mesoxalic acid, 1,3-dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid and oxalic acid. A highest mesoxalic acid selectivity of 86.42% was obtained for Pt-Pd/CNT catalyst while a maximum tartronic acid selectivity of 50.17% and 46.02% was achieved for Pd/CNT and Pt/CNT respectively. It was found that the introduction of Pd into Pt/CNT lattice facilitated the formation of C3 products in terms of maximum selectivity achieved (86.42%) while the monometallic catalysts (Pd/CNT and Pt/CNT) showed a poor performance in comparison to their counterpart.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links