Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, et al.
    J Tradit Complement Med, 2018 Jul;8(3):361-376.
    PMID: 29992107 DOI: 10.1016/j.jtcme.2017.08.012
    Herbal medicine, phytomedicine or botanical medicine are synonymous, utilizes plants intended for medicinal purposes. Medicinal use of herbal medicine in the treatment and prevention of diseases including diabetes has a long history compared to conventional medicine. Diabetes is one of the major public health concerns over the world. Diabetes or hyperglycemia is considered to be one of the common public health hazard; optimal control of which is still not possible. Persistent hyperglycemia or uncontrolled diabetes has the potential to cause serious complications such as kidney disease, vision loss, cardiovascular disease, and lower-limb amputations which contributed towards morbidity and mortality in diabetes. There are various approaches to treat and prevent diabetes as well as its secondary complications, one of it is herbal medicines. However, the selection of herbs might depends on several factors, which include the stage of progression of diabetes, types of comorbidities that the patients are having, availability, affordability as well as the safety profile of the herbs. This review focuses on the herbal and natural remedies that play the role in the treatment or prevention of this morbid disorder - diabetes, including their underlying mechanisms for the blood glucose-lowering property and the herbal products already been marketed for the remedial action of diabetes.
  2. Bhattamisra SK, Yean Yan VL, Koh Lee C, Hui Kuean C, Candasamy M, Liew YK, et al.
    J Tradit Complement Med, 2019 Jul;9(3):206-214.
    PMID: 31193983 DOI: 10.1016/j.jtcme.2018.05.001
    Geraniol, an active constituent of rose and palmarosa essential oils, possesses several pharmacological properties, including antioxidant, antibacterial and antiulcer activity. Geraniol was therefore investigated for its antiulcer and anti-Helicobacter pylori activity in rats. Ulcers were induced by injecting acetic acid into the sub-serosal layer of the stomach followed by orogastric inoculation of H. pylori for 7 days. Geraniol (15 and 30 mg/kg), vehicle and a standard drug combination (amoxicillin, 50 mg/kg; clarithromycin, 25 mg/kg and omeprazole, 20 mg/kg) were administered twice daily for 14 days. All the parameters were measured at the end of treatment. The ulcer index was significantly (P 
  3. Aziz CB, Ismail CA, Hussin CM, Mohamed M
    J Tradit Complement Med, 2014 Oct;4(4):298-302.
    PMID: 25379476 DOI: 10.4103/2225-4110.139115
    Tualang honey ( Fēng Mì) is known to have anti-inflammatory property, but its antinociceptive property has not been extensively investigated. In this study, we examined the preemptive effects on administering different doses of Tualang honey and prednisolone on the nociceptive response in male Sprague-Dawley rats. Thirty-five male Sprague-Dawley rats were randomized into five groups (n = 7) and each group received either distilled water, Tualang honey (0.2, 1.2 or 2.4 g/kg) or prednisolone (10 mg/kg) for 10 days. The response to noxious thermal stimulus was assessed using tail flick test on Day 10. The well-being of the rats was also assessed by monitoring their food intake and body weight. Data were analyzed using one-way Analysis of Variance (ANOVA) with post-hoc Scheffe's test and P value less than 0.05 was considered significant. In tail flick test, the tail flick latency time was significantly higher in the groups that received 1.2 g/kg and 2.4 g/kg of Tualang honey and 10 mg/kg of prednisolone, compared to the control group (P < 0.05). There was significant reduction in the total food pellet intake in the groups receiving prednisolone and Tualang honey (1.2 g/kg and 2.4 g/kg) compared to controls; however, the body weight gain was only significantly reduced in the prednisolone group. All the parameters were not significantly affected in the group receiving 0.2 g/kg of Tualang honey. In conclusion, preemptive administration of Tualang honey (1.2 g/kg and 2.4 g/kg) and prednisolone (10 mg/kg) had reduced the pain responses. The reduced weight gain in the prednisolone group is an unwanted effect due to its metabolic and central actions. Further studies are required to confirm the antinociceptive effects and elucidate the mechanism of antinociceptive action of Tualang honey in the rats.
  4. Amuthan A, Devi V, Shreedhara CS, Rao V, Jasphin S, Kumar N
    J Tradit Complement Med, 2021 May;11(3):279-286.
    PMID: 34012874 DOI: 10.1016/j.jtcme.2020.08.004
    Background: Traditional Siddha Medicine advises using metal-based formulations to treat cancers. In the case of any toxicities during the therapy, Siddha physicians use Vernonia cinerea (VC) whole plant kashayam (crude aqueous extract-CAE) to reverse the toxic effects.

    Aim: To evaluate the nephroprotective activity of CAE and its fractions in cisplatin-induced nephrotoxicity and to assess whether they compromise the anticancer efficacy of cisplatin.

    Materials and methods: Cisplatin-induced renal damage was induced in Ehrlich Ascites Carcinoma (EAC) bearing mice during mild phase of tumor growth. CAE and its butanol (BF) and aqueous (AF) fractions were administered orally from the 5th day for five days. Nephroprotective potential (serum urea, creatinine, renal histology) and effect of VC on cisplatin anticancer efficacy (tumor volume, viable tumor cells, percentage increase in life span (% ILS)) were calculated.

    Result: CAE and its fractions significantly reversed the cisplatin-induced renal damage. CAE and BF treated animals showed regeneration of 50%-75% of proximal tubular cells. Compared to EAC control mice, the % ILS of the cisplatin-treated group was 244% and it was further extended to 379% after CAE administration. The % ILS in the CAE treated group was 1.6 times higher than the cisplatin alone treated group. GC-MS study showed the presence of astaxanthin and betulin.

    Conclusion: CAE of VC reverses cisplatin-induced kidney damage as well as regenerates proximal tubular epithelial cells, without compromising the anticancer effect of cisplatin. When CAE was further fractionated, the nephroprotective activity was retained, but the beneficial anticancer effect of cisplatin was compromised.

  5. Aigbe FR, Munavvar ASZ, Rathore H, Eseyin O, Pei YP, Akhtar S, et al.
    J Tradit Complement Med, 2018 Jan;8(1):72-80.
    PMID: 29321992 DOI: 10.1016/j.jtcme.2017.02.006
    Aristolochia ringens Vahl. (Aristolochiaceae (AR); mǎ dōu líng) is used traditionally in Nigeria for the management of various disorders including oedema. Preliminary investigation revealed its modulatory effect on the cardiovascular system. This study was aimed at investigating the effect of the aqueous root extract of A. ringens (AR) on haemodynamic parameters of spontaneously hypertensive rats (SHRs). The effect of oral subacute (21 days) and intravenous acute exposure of SHRs to the extract were assessed using tail cuff and carotid artery canulation methods respectively. In the latter, the effect of chloroform, butanol and aqueous fractions of AR were also evaluated. The extract significantly reduced systolic and diastolic blood pressures in SHRs, with peak reductions of 20.3% and 26.7% respectively at 50 mg/kg by the 21st day of oral subacute exposure. Upon intravenous exposure, AR (50 mg/kg) reduced systolic and diastolic blood pressure by as much as 53.4 ± 2.2 and 49.2 ± 2.8 mmHg respectively. A dose-dependent reduction in heart rate, significant at 25 and 50 mg/kg was also observed. Hexamethonium (20 mg/kg) and atropine (1 mg/kg) inhibited the extract's reduction of systolic blood pressure, diastolic blood pressure and heart rate significantly. The extract's butanol fraction produced the greatest systolic and diastolic blood pressures reduction of 67.0 ± 3.8 and 68.4 mmHg respectively at 25 mg/kg and heart rate reduction of 40 ± 7 beats per minute at 50 mg/kg. HPLC analysis revealed the presence of 4-hydroxybenzoic acid and quercetin in AR. The extract's alterations of haemodynamic parameters in this study show that it has hypotensive effect on spontaneously hypertensive rats.
  6. Abdul Aziz NU, Chiroma SM, Mohd Moklas MA, Adenan MI, Ismail A, Basir R, et al.
    J Tradit Complement Med, 2021 Sep;11(5):419-426.
    PMID: 34522636 DOI: 10.1016/j.jtcme.2021.02.007
    Background and aim: Postpartum depression (PPD) is a familiar problem which is associated with about 10-20% of women after child delivery. Fish oil (FO) has a therapeutic potentials to many diseases including mood disorders. However, there is paucity of data on the effects of FO supplementation on PPD rat model. Hence, this study aimed at investigating the potentials of FO in ameliorating depressive-like behaviors in PPD rat by evaluating the involvement of NLRP3-inflammasome.

    Experimental procedure: Thirty six virgin adult female rats (n = 6) were randomly divided into six groups; Group 1-3 were normal control (NC), Sham (SHAM) and ovariectomized group (OVX) respectively whereas group 4-6 were PPD rats forced-fed once daily with distilled water (PPD), fish oil (PPD + FO; 9 g/kg) and Fluoxetine (PPD + FLX; 15 mg/kg) respectively from postpartum day 1 and continued for 10 consecutive days. Rats behaviors were evaluated on postpartum day 10 through open field test (OFT) and forced swimming test (FST), followed by biochemical analysis of NLRP3 inflammasome proteins pathway in their brain and determination of neutrophil to lymphocyte ratio (NLR).

    Results: PPD-induced rats exhibited high immobility and low swimming time in FST with increased inflammatory status; NLR, IL-1β and NFкB/NLRP3/caspase-1 activity in their hippocampus. However, administration of FO or fluoxetine reversed the aforementioned abnormalities.

    Conclusion: In conclusion, 10 days supplementation with FO ameliorated the depressive-like behaviors in PPD rats by targeting the NFкB/NLRP3/caspase-1/IL-1β activity. This has shed light on the potential of NLRP3 as a therapeutic target in treatment of PPD in rats.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links