Displaying publications 21 - 40 of 129 in total

Abstract:
Sort:
  1. Chua CLL, Ng IMJ, Yap BJM, Teo A
    Malar J, 2021 Jul 16;20(1):319.
    PMID: 34271941 DOI: 10.1186/s12936-021-03849-1
    There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
  2. Al-Mekhlafi HM, Madkhali AM, Ghailan KY, Abdulhaq AA, Ghzwani AH, Zain KA, et al.
    Malar J, 2021 Jul 13;20(1):315.
    PMID: 34256757 DOI: 10.1186/s12936-021-03846-4
    BACKGROUND: Saudi Arabia and Yemen are the only two countries in the Arabian Peninsula that are yet to achieve malaria elimination. Over the past two decades, the malaria control programme in Saudi Arabia has successfully reduced the annual number of malaria cases, with the lowest incidence rate across the country reported in 2014. This study aims to investigate the distribution of residual malaria in Jazan region and to identify potential climatic drivers of autochthonous malaria cases in the region.

    METHODS: A cross-sectional study was carried out from 1 April 2018 to 31 January 2019 in Jazan region, southwestern Saudi Arabia, which targeted febrile individuals attending hospitals and primary healthcare centres. Participants' demographic data were collected, including age, gender, nationality, and residence. Moreover, association of climatic variables with the monthly autochthonous malaria cases reported during the period of 2010-2017 was retrospectively analysed.

    RESULTS: A total of 1124 febrile subjects were found to be positive for malaria during the study period. Among them, 94.3 and 5.7% were infected with Plasmodium falciparum and Plasmodium vivax, respectively. In general, subjects aged 18-30 years and those aged over 50 years had the highest (42.7%) and lowest (5.9%) percentages of malaria cases. Similarly, the percentage of malaria-positive cases was higher among males than females (86.2 vs 13.8%), among non-Saudi compared to Saudi subjects (70.6 vs 29.4%), and among patients residing in rural rather than in urban areas (89.8 vs 10.2%). A total of 407 autochthonous malaria cases were reported in Jazan region between 2010 and 2017. Results of zero-inflated negative binomial regression analysis showed that monthly average temperature and relative humidity were the significant climatic determinants of autochthonous malaria in the region.

    CONCLUSION: Malaria remains a public health problem in most governorates of Jazan region. The identification and monitoring of malaria transmission hotspots and predictors would enable control efforts to be intensified and focused on specific areas and therefore expedite the elimination of residual malaria from the whole region.

  3. Naing C, Wong ST, Aung HH
    Malar J, 2021 Jul 03;20(1):302.
    PMID: 34217314 DOI: 10.1186/s12936-021-03836-6
    BACKGROUND: Malaria is still a major public health problem in sub-Saharan Africa and South-east Asia. The clinical presentations of malaria infection vary from a mild febrile illness to life-threatening severe malaria. Toll like receptors (TLRs) are postulated to be involved in the innate immune responses to malaria. Individual studies showed inconclusive findings. This study aimed to assess the role of TLR4 (D299G, T399I) and TLR9 (T1237C, T1486C) in severity or susceptibility of malaria by meta-analysis of data from eligible studies.

    METHODS: Relevant case-control studies that assessed the association between TLR 4/9 and malaria either in susceptibility or progression were searched in health-related electronic databases. Quality of included studies was evaluated with Newcastle-Ottawa scale. Pooled analyses for specific genetic polymorphisms were done under five genetic models. Stratified analysis was done by age and geographical region (Asian countries vs non-Asian countries).

    RESULTS: Eleven studies (2716 cases and 2376 controls) from nine endemic countries were identified. Five studies (45.4%) obtained high score in quality assessment. Overall, a significant association between TLR9 (T1486C) and severity of malaria is observed in allele model (OR: 1.26, 95% CI: 1.08-1.48, I2 = 0%) or homozygous model (OR: 1.55, 95% CI: 1.08-2.28, I2 = 0%). For TLR9 (T1237C), a significant association with severity of malaria is observed in in heterozygous model (OR:1.89, 95% CI: 1.11-3.22, I2 = 75%). On stratifications, TLR9 (T1486C) is only significantly associated with a subgroup of children of non-Asian countries under allele model (OR: 1.25, 95% CI: 1.02-1.38), while 1237 is with a subgroup of adults from Asian countries under heterozygous model (OR: 2.0, 95% CI: 1.09-3.64, I2 = 39%). Regarding the susceptibility to malaria, TLR9 (T1237C) is significantly associated only with the children group under recessive model (OR: 2.21, 95% CI: 1.06-4.57, I2=85%) and homozygous model (OR: 1.49, 95% CI: 1.09-2.0, I2 = 0%). For TLR4 (D299G, T399I), none is significantly associated with either severity of malaria or susceptibility to malaria under any genetic models.

    CONCLUSIONS: The findings suggest that TLR 9 (T1486C and T1237C) seems to influence the progression of malaria, under certain genetic models and in specific age group of people from specific geographical region. TLR 9 (T1237C) also plays a role in susceptibility to malaria under certain genetic models and only with children of non-Asian countries. To substantiate these, future well designed studies with larger samples across endemic countries are needed.

  4. Moraes Barros RR, Thawnashom K, Gibson TJ, Armistead JS, Caleon RL, Kaneko M, et al.
    Malar J, 2021 Jun 05;20(1):247.
    PMID: 34090438 DOI: 10.1186/s12936-021-03773-4
    BACKGROUND: Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites.

    METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey.

    RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method.

    CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.

  5. Munajat MB, Rahim MAFA, Wahid W, Seri Rakna MIM, Divis PCS, Chuangchaiya S, et al.
    Malar J, 2021 Apr 27;20(1):202.
    PMID: 33906645 DOI: 10.1186/s12936-021-03741-y
    BACKGROUND: Malaysia is on track towards malaria elimination. However, several cases of malaria still occur in the country. Contributing factors and communal aspects have noteworthy effects on any malaria elimination activities. Thus, assessing the community's knowledge, attitudes and practices (KAP) towards malaria is essential. This study was performed to evaluate KAP regarding malaria among the indigenous people (i.e. Orang Asli) in Peninsular Malaysia.

    METHODS: A household-based cross-sectional study was conducted in five remote villages (clusters) of Orang Asli located in the State of Kelantan, a central region of the country. Community members aged six years and above were interviewed. Demographic, socio-economic and KAP data on malaria were collected using a structured questionnaire and analysed using descriptive statistics.

    RESULTS: Overall, 536 individuals from 208 households were interviewed. Household indoor residual spraying (IRS) coverage and bed net ownership were 100% and 89.2%, respectively. A majority of respondents used mosquito bed nets every night (95.1%), but only 50.2% were aware that bed nets were used to prevent malaria. Nevertheless, almost all of the respondents (97.9%) were aware that malaria is transmitted by mosquitoes. Regarding practice for managing malaria, the most common practice adopted by the respondents was seeking treatment at the health facilities (70.9%), followed by self-purchase of medication from a local shop (12.7%), seeking treatment from a traditional healer (10.5%) and self-healing (5.9%). Concerning potential zoonotic malaria, about half of the respondents (47.2%) reported seeing monkeys from their houses and 20.1% reported entering nearby forests within the last 6 months.

    CONCLUSION: This study found that most populations living in the villages have an acceptable level of knowledge and awareness about malaria. However, positive attitudes and practices concerning managing malaria require marked improvement.

  6. Mahittikorn A, Masangkay FR, Kotepui KU, Milanez GJ, Kotepui M
    Malar J, 2021 Apr 09;20(1):179.
    PMID: 33836773 DOI: 10.1186/s12936-021-03714-1
    BACKGROUND: Plasmodium knowlesi is recognized as the fifth Plasmodium species causing malaria in humans. It is morphologically similar to the human malaria parasite Plasmodium malariae, so molecular detection should be used to clearly discriminate between these Plasmodium species. This study aimed to quantify the rate at which P. knowlesi is misidentified as P. malariae by microscopy in endemic and non-endemic areas.

    METHODS: The protocol of this systematic review was registered in the PROSPERO International Prospective Register of Systematic Reviews (ID = CRD42020204770). Studies reporting the misidentification of P. knowlesi as P. malariae by microscopy and confirmation of this by molecular methods in MEDLINE, Web of Science and Scopus were reviewed. The risk of bias in the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS). The pooled prevalence and 95% confidence interval (CI) of the misidentification of P. knowlesi as P. malariae by microscopy were estimated using a random effects model. Subgroup analysis of the study sites was performed to demonstrate any differences in the misidentification rates in different areas. Heterogeneity across the included studies was assessed and quantified using Cochran's Q and I2 statistics, respectively. Publication bias in the included studies was assessed using the funnel plot, Egger's test and contour-enhanced funnel plot.

    RESULTS: Among 375 reviewed studies, 11 studies with a total of 1569 confirmed P. knowlesi cases in humans were included. Overall, the pooled prevalence of the misidentification of P. knowlesi as P. malariae by microscopy was estimated at 57% (95% CI 37-77%, I2: 99.3%). Subgroup analysis demonstrated the highest rate of misidentification in Sawarak, Malaysia (87%, 95% CI 83-90%, I2: 95%), followed by Sabah, Malaysia (85%, 95% CI 79-92%, I2: 85.1%), Indonesia (16%, 95% CI 6-38%), and then Thailand (4%, 95% CI 2-9%, I2: 95%).

    CONCLUSION: Although the World Health Organization (WHO) recommends that all P. malariae-positive diagnoses made by microscopy in P. knowlesi endemic areas be reported as P. malariae/P. knowlesi malaria, the possibility of microscopists misidentifying P. knowlesi as P. malariae is a diagnostic challenge. The use of molecular techniques in cases with malariae-like Plasmodium with high parasite density as determined by microscopy could help identify human P. knowlesi cases in non-endemic countries.

  7. Lai MY, Ooi CH, Lau YL
    Malar J, 2021 Mar 25;20(1):166.
    PMID: 33766038 DOI: 10.1186/s12936-021-03707-0
    BACKGROUND: As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi.

    METHODS: A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes.

    RESULTS: LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange.

    CONCLUSIONS: These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.

  8. Loughland JR, Woodberry T, Oyong D, Piera KA, Amante FH, Barber BE, et al.
    Malar J, 2021 Feb 16;20(1):97.
    PMID: 33593383 DOI: 10.1186/s12936-021-03642-0
    BACKGROUND: Plasmodium falciparum malaria increases plasma levels of the cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic factor associated with dendritic cell (DC) expansion. It is unknown if the zoonotic parasite Plasmodium knowlesi impacts Flt3L or DC in human malaria. This study investigated circulating DC and Flt3L associations in adult malaria and in submicroscopic experimental infection.

    METHODS: Plasma Flt3L concentration and blood CD141+ DC, CD1c+ DC and plasmacytoid DC (pDC) numbers were assessed in (i) volunteers experimentally infected with P. falciparum and in Malaysian patients with uncomplicated (ii) P. falciparum or (iii) P. knowlesi malaria.

    RESULTS: Plasmodium knowlesi caused a decline in all circulating DC subsets in adults with malaria. Plasma Flt3L was elevated in acute P. falciparum and P. knowlesi malaria with no increase in a subclinical experimental infection. Circulating CD141+ DCs, CD1c+ DCs and pDCs declined in all adults tested, for the first time extending the finding of DC subset decline in acute malaria to the zoonotic parasite P. knowlesi.

    CONCLUSIONS: In adults, submicroscopic Plasmodium infection causes no change in plasma Flt3L but does reduce circulating DCs. Plasma Flt3L concentrations increase in acute malaria, yet this increase is insufficient to restore or expand circulating CD141+ DCs, CD1c+ DCs or pDCs. These data imply that haematopoietic factors, yet to be identified and not Flt3L, involved in the sensing/maintenance of circulating DC are impacted by malaria and a submicroscopic infection. The zoonotic P. knowlesi is similar to other Plasmodium spp in compromising DC in adult malaria.

  9. Balami AD, Said SM, Zulkefli NAM, Norsa'adah B, Audu B
    Malar J, 2021 Jan 21;20(1):55.
    PMID: 33478529 DOI: 10.1186/s12936-021-03586-5
    BACKGROUND: The prevalence of malaria in pregnancy and its complications, remain very high in Nigeria. This study aimed to determine the effects of a malaria health educational intervention based on the information-motivation-behavioural skills (IMB) model on malaria preventive practices and pregnancy outcomes.

    METHODS: The study was a randomized controlled parallel-group study, where 372 randomly selected antenatal care attendees were randomly assigned to one of either two groups after collecting baseline data. The intervention group then received a four-hour health education intervention in Hausa language, which was developed based on the IMB model, while the control group received a similarly designed health education on breastfeeding. Follow up data were then collected from the participants at a first (2 months post-intervention) and second (4 months post-intervention) follow up, and at the end of their pregnancies.

    RESULTS: For both groups, reported ITN use had increased from baseline (Intervention: Often-14.0%, Almost always-9.1; Control: Often-12.4%; Almost always 16.1%) to the time of second follow up (Intervention: Often -28.10%, Almost always-24.5; Control: Often-17.2%; Almost always 19.5%). Reported IPTp uptake at second follow up was also higher for the intervention group (Intervention: Two doses-59.0%, Three doses 22.3%; Control group: Two doses-48.4%, Three doses-7.0%). The drop in the haematocrit levels was greater for the control group (32.42% to 30.63%) compared to the intervention group (33.09% to 31.93%). The Generalized Linear Mixed Models (GLMM) analysis revealed that the intervention had significantly improved reported ITN use, reported IPTp uptake, and haematocrit levels, but had no significant effect on the incidence of reported malaria diagnosis or babies' birth weights.

    CONCLUSIONS: The intervention was effective in improving ITN use, IPTp uptake, and haematocrit levels. It is, therefore, recommended for the modules to be adopted and incorporated into the routine antenatal care programmes in health centres with predominantly Hausa speaking clients.

    TRIAL REGISTRATION: Pan African Clinical Trial Registry, PACTR201610001823405. Registered 26 October 2016, www.pactr.org .

  10. Alvarez-Fernandez A, Bernal MJ, Fradejas I, Martin Ramírez A, Md Yusuf NA, Lanza M, et al.
    Malar J, 2021 Jan 06;20(1):16.
    PMID: 33407529 DOI: 10.1186/s12936-020-03544-7
    BACKGROUND: The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum.

    METHODS: Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method.

    RESULTS: The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed.

    CONCLUSIONS: The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.

  11. Madkhali AM, Al-Mekhlafi HM, Atroosh WM, Ghzwani AH, Zain KA, Abdulhaq AA, et al.
    Malar J, 2020 Dec 02;19(1):446.
    PMID: 33267841 DOI: 10.1186/s12936-020-03524-x
    BACKGROUND: Despite significant progress in eliminating malaria from the Kingdom of Saudi Arabia, the disease is still endemic in the southwestern region of the country. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used in Saudi Arabia since 2007 as a first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to artemisinin and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum parasites circulating in Jazan region, southwestern Saudi Arabia.

    METHODS: A total of 151 P. falciparum isolates were collected between April 2018 and March 2019 from 12 of the governorates in Jazan region. Genomic DNA was extracted from dried blood spots and amplified using nested PCR. Polymorphisms in the propeller domain of the P. falciparum k13 (pfkelch13) gene and point mutations in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by sequencing.

    RESULTS: No mutations in the pfkelch13 propeller domain were found in any of the 151 isolates. However, point mutations in the pfdhfr and pfdhps genes were detected in 90.7% (137/151) of the isolates. The pfdhfr double mutations N51I + S108N (i.e. ACICNI haplotype) and triple mutations N51I + C59R + S108N (i.e. ACIRNI haplotype) were detected in 47% and 37.8% of the isolates, respectively. Moreover, the pfdhps single mutation at codon A437G and double mutations A437G + K540E (i.e. SGEAAI haplotype) were observed in 4.6% and 51.7% of the isolates, respectively. Interestingly, 23.8%, 25.1 and 12.6% of the isolates had quintuple, quadruple and triple mutated combined pfdhfr-pfdhps genotypes, respectively. Furthermore, significant associations were found between the prevalence of mutant haplotypes and the age, gender and nationality of the patients (P 

  12. Rahim MAFA, Munajat MB, Idris ZM
    Malar J, 2020 Nov 07;19(1):395.
    PMID: 33160393 DOI: 10.1186/s12936-020-03470-8
    BACKGROUND: Malaysia has already achieved remarkable accomplishments in reaching zero indigenous human malaria cases in 2018. Prompt malaria diagnosis, surveillance and treatment played a key role in the country's elimination success. Looking at the dynamics of malaria distribution during the last decades might provide important information regarding the potential challenges of such an elimination strategy. This study was performed to gather all data available in term of prevalence or incidence on Plasmodium infections in Malaysia over the last four decades.

    METHODS: A systematic review of the published English literature was conducted to identify malaria distribution from 1980 to June 2019 in Malaysia. Two investigators independently extracted data from PubMed, Scopus, Web of Science and Elsevier databases for original papers.

    RESULTS: The review identified 46 epidemiological studies in Malaysia over the 39-year study period, on which sufficient information was available. The majority of studies were conducted in Malaysia Borneo (31/46; 67.4%), followed by Peninsular Malaysia (13/46; 28.3%) and in both areas (2/46; 4.3%). More than half of all studies (28/46; 60.9%) were assessed by both microscopy and PCR. Furthermore, there was a clear trend of decreases of all human malaria species with increasing Plasmodium knowlesi incidence rate throughout the year of sampling period. The summary estimates of sensitivity were higher for P. knowlesi than other Plasmodium species for both microscopy and PCR. Nevertheless, the specificities of summary estimates were similar for microscopy (40-43%), but varied for PCR (2-34%).

    CONCLUSIONS: This study outlined the epidemiological changes in Plasmodium species distribution in Malaysia. Malaria cases shifted from predominantly caused by human malaria parasites to simian malaria parasites, which accounted for the majority of indigenous cases particularly in Malaysia Borneo. Therefore, malaria case notification and prompt malaria diagnosis in regions where health services are limited in Malaysia should be strengthened and reinforced to achieving the final goal of malaria elimination in the country.

  13. Chong ETJ, Neoh JWF, Lau TY, Lim YA, Chai HC, Chua KH, et al.
    Malar J, 2020 Oct 22;19(1):377.
    PMID: 33092594 DOI: 10.1186/s12936-020-03451-x
    BACKGROUND: Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia.

    METHODS: A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3.

    RESULTS: The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp.

    CONCLUSIONS: The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.

  14. Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B
    Malar J, 2020 Oct 01;19(1):350.
    PMID: 33004070 DOI: 10.1186/s12936-020-03424-0
    BACKGROUND: Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand.

    METHODS: A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    RESULTS: Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    CONCLUSIONS: The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.

  15. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

  16. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL
    Malar J, 2020 Jul 10;19(1):241.
    PMID: 32650774 DOI: 10.1186/s12936-020-03314-5
    BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR.

    METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR.

    RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples.

    CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.

  17. Selvarajah D, Naing C, Htet NH, Mak JW
    Malar J, 2020 Jun 19;19(1):211.
    PMID: 32560728 DOI: 10.1186/s12936-020-03283-9
    BACKGROUND: The global malaria decline has stalled and only a few countries are pushing towards pre-elimination. The aim of the malaria elimination phase is interruption of local transmission of a specified malaria parasite in a defined geographical area. New and improved screening tools and strategies are required for detection and management of very low-density parasitaemia in the field. The objective of this study was to synthesize evidence on the diagnostic accuracy of loop-mediated isothermal amplification (LAMP) test for the detection of malaria parasites among people living in endemic areas.

    METHODS: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guideline. Relevant studies in the health-related electronic databases were searched. According to the criteria set for this study, eligible studies were identified. The quality of included studies was evaluated with the use of a quality assessment checklist. A summary performance estimates such as pooled sensitivity and specificity were stratified by type of LAMP. Bivariate model for data analyses was applied. Summary receiver operating characteristics plots were created to display the results of individual studies in a receiver operating characteristics space. Meta-regression analysis was performed to investigate the sources of heterogeneity among individual studies.

    RESULTS: Twenty-seven studies across 17 endemic countries were identified. The vast majority of studies were with unclear risk of bias in the selection of index test. Overall, the pooled test performances were high for Pan LAMP (sensitivity: 0.95, 95% CI 0.91 to 0.97; specificity: 0.98, 95% CI 0.95 to 0.99), Plasmodium falciparum (Pf) LAMP (sensitivity: 0.96, 95% CI 0.94 to 0.98; specificity: 0.99, 95% CI 0.96 to 1.00) or for Plasmodium vivax (Pv) LAMP from 6 studies (sensitivity: 0.98, 95% CI 0.92 to 0.99; specificity: 0.99, 95% CI 0.72 to 1.00). The area under the curve for Pan LAMP (0.99, 95% CI 0.98-1.00), Pf LAMP (0.99, 95% CI 0.97-0.99) and Pv LAMP was (1.00, 95% CI 0.98-1.00) indicated that the diagnostic performance of these tests were within the excellent accuracy range. Meta-regression analysis showed that sample size had the greatest impact on test performance, among other factors.

    CONCLUSIONS: The current findings suggest that LAMP-based assays are appropriate for detecting low-level malaria parasite infections in the field and would become valuable tools for malaria control and elimination programmes. Future well-designed larger sample studies on LAMP assessment in passive and active malaria surveillances that use PCR as the reference standard and provide sufficient data to construct 2 × 2 diagnostic table are needed.

  18. Sugaram R, Suwannasin K, Kunasol C, Mathema VB, Day NPJ, Sudathip P, et al.
    Malar J, 2020 Mar 04;19(1):107.
    PMID: 32127009 DOI: 10.1186/s12936-020-03176-x
    BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples.

    METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated.

    RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification.

    CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.

  19. Hussin N, Lim YA, Goh PP, William T, Jelip J, Mudin RN
    Malar J, 2020 Jan 31;19(1):55.
    PMID: 32005228 DOI: 10.1186/s12936-020-3135-x
    BACKGROUND: To date, most of the recent publications on malaria in Malaysia were conducted in Sabah, East Malaysia focusing on the emergence of Plasmodium knowlesi. This analysis aims to describe the incidence, mortality and case fatality rate of malaria caused by all Plasmodium species between Peninsular Malaysia and East Malaysia (Sabah and Sarawak) over a 5-year period (2013-2017).

    METHODS: This is a secondary data review of all diagnosed and reported malaria confirmed cases notified to the Ministry of Health, Malaysia between January 2013 and December 2017.

    RESULTS: From 2013 to 2017, a total of 16,500 malaria cases were notified in Malaysia. The cases were mainly contributed from Sabah (7150; 43.3%) and Sarawak (5684; 34.4%). Majority of the patients were male (13,552; 82.1%). The most common age group in Peninsular Malaysia was 20 to 29 years (1286; 35.1%), while Sabah and Sarawak reported highest number of malaria cases in age group of 30 to 39 years (2776; 21.6%). The top two races with malaria in Sabah and Sarawak were Bumiputera Sabah (5613; 43.7%) and Bumiputera Sarawak (4512; 35.1%), whereas other ethnic group (1232; 33.6%) and Malays (1025; 28.0%) were the two most common races in Peninsular Malaysia. Plasmodium knowlesi was the commonest species in Sabah and Sarawak (9902; 77.1%), while there were more Plasmodium vivax cases (1548; 42.2%) in Peninsular Malaysia. The overall average incidence rate, mortality rate and case fatality rates for malaria from 2013 to 2017 in Malaysia were 0.106/1000, 0.030/100,000 and 0.27%, respectively. Sarawak reported the highest average incidence rate of 0.420/1000 population followed by Sabah (0.383/1000). Other states in Peninsular Malaysia reported below the national average incidence rate with less than 0.100/1000.

    CONCLUSIONS: There were different trends and characteristics of notified malaria cases in Peninsular Malaysia and Sabah and Sarawak. They provide useful information to modify current prevention and control measures so that they are customised to the peculiarities of disease patterns in the two regions in order to successfully achieve the pre-elimination of human-only species in the near future.

  20. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links