Displaying publications 21 - 40 of 44 in total

Abstract:
Sort:
  1. Gan HM, Amornsakun T, Tan MP
    Mitochondrial DNA B Resour, 2017 Mar 17;2(1):148-149.
    PMID: 33473747 DOI: 10.1080/23802359.2017.1298418
    We sequenced and assembled three whole mitogenome sequences of the commercially important snakeskin gourami Trichopodus pectoralis isolated from Malaysia (introduced), Viet Nam (native) and Thailand (native). The mitogenome length range from 16,397 to 16,420 bp. The final partitioned nucleotide alignment consists of 14,002 bp and supports the monophyly of the genus Trichopodus (95% ultrafast bootstrap support) with T. trichopterus forming a sister group with the members of T. pectoralis.
  2. Niu YF, Ni SB, Liu ZY, Zheng C, Mao CL, Shi C, et al.
    Mitochondrial DNA B Resour, 2018 Apr 03;3(1):440-441.
    PMID: 33490512 DOI: 10.1080/23802359.2018.1457995
    The Lucuma nervosa, native to Western Ghats of India, Malaysia and south-eastern Asia, is a tree member of the mulberry family (Sapotaceae). Chloroplast genome sequences play an significant role in the development of molecular markers in plant phylogenetic and population genetic studies. In this study, we report the complete chloroplast genome sequence of L. nervosa for the first time. The chloroplast genome is 157,920 bp long and includes 113 genes. Its LSC, SSC, and IR regions are 88,123, 18,861, and 25,468 bp long, respectively. Phylogenetic tree analysis exhibited that L. nervosa was clustered with other Sapotaceae species with high bootstrap values.
  3. Guan M, Liu X, Lin F, Xie Z, Fazhan H, Ikhwanuddin M, et al.
    Mitochondrial DNA B Resour, 2018 Mar 14;3(1):368-369.
    PMID: 33490509 DOI: 10.1080/23802359.2018.1450685
    In this study, we sequenced and analyzed the whole mitochondrial genome of Metopograpsus frontalis Miers, 1880 (Decapoda, Grapsidae). The circular genome is 15,587 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, as well as a control region. Both atp8/atp6 and nad4L/nad4 share 7 nucleotides in their adjacent overlapping region, which is identical to those observed in other Grapsidae crabs. The genome composition and gene order follow a classic crab-type arrangement regulation. The phylogenetic analysis suggested that Grapsidae crabs formed a solid monophyletic group. The newly described mitochondrial genome may provide genetic marker for studies on phylogeny of the grapsid crabs.
  4. Wang JH, Zhao KK, Zhu ZX, Wang HF
    Mitochondrial DNA B Resour, 2018 Oct 03;3(2):1145-1146.
    PMID: 33490565 DOI: 10.1080/23802359.2018.1522977
    Vatica mangachapoi is a tree up to 20 m tall with white resinous. It is distributed in China (Hainan province), Indonesia, Malaysia (N Borneo), Philippines, Thailand, and Vietnam. It grows in forests on hills and mountain slopes below 700 metres. Its durable wood is used for making boats and building bridges and houses. It has been ranked as a VU (Vulnerable) species in China. Here we report and characterize the complete plastid genome sequence of V. mangachapoi in an effort to provide genomic resources useful for promoting its conservation and phylogenetic research. The complete plastome is 151,538 bp in length and contains the typical structure and gene content of angiosperm plastome, including two Inverted Repeat (IR) regions of 23,921 bp, a Large Single-Copy (LSC) region of 83,587 bp and a Small Single-Copy (SSC) region of 20,109 bp. The plastome contains 114 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA gene, and 4 unique rRNA genes. The overall A/T content in the plastome of V. mangachapoi is 62.80%. The phylogenetic analysis indicated that V. mangachapoi and V. odorata is closely related and as an independent branch in Malvales in our study. The complete plastome sequence of V. mangachapoi will provide a useful resource for the conservation genetics of this species and for the phylogenetic studies for Vatica.
  5. Wakamiya T, Tingek S, Okuyama H, Kiyoshi T, Takahashi JI
    Mitochondrial DNA B Resour, 2017 Jan 17;2(1):24-25.
    PMID: 33490434 DOI: 10.1080/23802359.2016.1275847
    In this study, we analyzed the complete mitochondrial genome of the cavity-nesting honeybee, A. koschevnikovi. The mitochondrial genome of A. koschevnikovi was observed to be a circular molecule of 15,278 bp and was similar to that of the other cavity-nesting honeybee species. The average AT content in the A. koschevnikovi mitochondrial genome was 84%. It was predicted to contain 13 protein-coding, 24 tRNA and two rRNA genes, along with one A + T-rich control region, besides three tRNA-Met repeats.
  6. Jahari PNS, Mohd Azman S, Munian K, M Fauzi NF, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Sep 01;5(3):3262-3264.
    PMID: 33458132 DOI: 10.1080/23802359.2020.1812449
    The increasing interest in understanding the evolutionary relationship between members of the Pteropodidae family has been greatly aided by genomic data from the Old World fruit bats. Here we present the complete mitogenome of Geoffroy's rousette, Rousettus amplexicaudatus found in Peninsular Malaysia . The mitogenome constructed is 16,511bp in length containing 37 genes; 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a D-loop region. The overall base composition is estimated to be 32.28% for A, 25.64% for T, 14.09% for G and 27.98% for C, indicating a slightly AT rich feature (57.93%). A phylogenetic and BLASTn analysis against other available mitogenomes showed Malaysian R. amplexicaudatus matched 98% similarity to the same species in Cambodia and Vietnam. However, it differed considerably (92.53% similarity) with the same species in the Philippines. This suggests flexibility in Rousettus sp. with regards to adapting to mesic and dry habitats, ability for long-distance dispersal and remarkably precise lingual echolocation thus supporting its wide-range distribution and colonization. Further taxonomical and mitogenomic comparatives are required in resolving the evolutionary relationship between Rousettus spp.
  7. Jahari PNS, Mohd Azman S, Munian K, Ahmad Ruzman NH, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Aug 26;5(3):3004-3006.
    PMID: 33458034 DOI: 10.1080/23802359.2020.1797583
    The mitogenome of a plantain squirrel, Callosciurus notatus, collected from Bukit Tarek Forest Reserve (Extension), Selangor, Malaysia was sequenced using BGISEQ-500RS technology. The 16,582 bp mitogenome consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. A phylogenetic and BLASTn analysis against other available datasets showed that the mitogenome matched with 99.49% similarity to a previously published C. notatus mitogenome from Peninsular Malaysia. However, it also diverged by nearly 8% (92.24% match) from a second previously published mitogenome for the same species, sampled in East Kalimantan, Indonesia. This suggests a difference in landscape features between both localities might affect its genetic connectivity.
  8. Tao L, Shi ZG, Long QY
    Mitochondrial DNA B Resour, 2020 Oct 09;5(3):3549-3550.
    PMID: 33458237 DOI: 10.1080/23802359.2020.1829132
    Syzygium malaccense is native to Malaysia. It is sometimes called the malay apple, malay rose-apple, mountain rose-apple, mountain apple, water apple, or French cashew. The tree is very popular in many tropical and subtropical regions for its fruit and traditional medicine. The first complete chloroplast genome of Syzygium malaccense has been reported in this study. The complete chloroplast genome of Syzygium malaccense is 158,954 bp, composed of four regions: a large single-copy region with a size of 87,991 bp, a small single copy region with a size of 18,793 bp, and two inverted repeat regions with a size of 26,085 bp. The GC content is 36.97%. A total of 132 genes were annotated, including 84 encoding proteins, eight encoding rRNA genes, 37 encoding tRNA genes, and three encoding pseudo genes. Phylogenetic analysis showed that Syzygium aromaticum, Syzygium cumini, and Syzygium forrestii are closely related to Syzygium malaccense.
  9. Chen J, Lee SY, Munugoda KD, Mohamed R, Subasinghe SMCUP, Liao W
    Mitochondrial DNA B Resour, 2021 May 19;6(6):1699-1701.
    PMID: 34104743 DOI: 10.1080/23802359.2021.1926362
    Gyrinops walla is an important agarwood-producing tree and threatened species from Sri Lanka. Herein, we assembled and characterized the complete chloroplast (cp) genome of G. walla as a genomic resource for conservation purposes. The 175,130 bp long genome is comprised of 87,376 bp large single-copy (LSC) and 3316 bp small single-copy (SSC) regions, which are separated by two inverted repeat (IR) region, each with a size of 42,291 bp. A total of 140 genes were predicted for the cp genome, which includes 94 protein-coding, 38 tRNA, and eight rRNA genes. Phylogenetic analysis showed that G. walla is fully resolved in a sister position to Aquilaria in the family Thymelaeaceae. The data provided will be useful for study on the molecular phylogenetics and evolution of Thymelaeaceae in the future.
  10. Sarmiento ME, Chin KL, Lau NS, Aziah I, Norazmi MN, Acosta A, et al.
    Mitochondrial DNA B Resour, 2021 May 23;6(6):1710-1714.
    PMID: 34104748 DOI: 10.1080/23802359.2021.1930213
    This paper reports on the complete mitochondrial (mt) genome of a horseshoe crab, Tachypleus gigas (T. gigas), in Kuala Kemaman, Terengganu, Malaysia. Whole-genome sequencing of hemocyte DNA was performed with Illumina HiSeq system and the generated reads were de novo assembled with ABySS 2.1.5 and reassembled using mitoZ against Carcinoscorpius rotundicauda and Limulus polyphemus, resulting in a contig of 15 Kb. Phylogenetic analysis of the assembled mt genome suggests that the Tachypleus gigas is closely related to Tachypleus tridentatus than to Carcinoscorpius rotundicauda.
  11. Wang ZF, Yu EP, Zeng QS, Deng HG, Cao HL, Li ZA, et al.
    Mitochondrial DNA B Resour, 2021;6(12):3327-3328.
    PMID: 34746403 DOI: 10.1080/23802359.2021.1994901
    Ormosia purpureiflora is endemic to China. It is named after its purple flowers. It is a small tree only up to 3 m. It has leathery leaves, racemose inflorescences. The seeds are elliptic and red in coat. It is only confined to Luofushan Provincial Nature Reserve in Huizhou of Guangdong Province. Herein, we first reported on its complete chloroplast genome sequence as genomic resource for conservation purposes. The chloroplast genome of O. purpureiflora was 173,364 bp in length, with a large single-copy region of 73,465 bp, a small single-copy region of 18,751 bp, and a pair of inverted repeat regions that were 40,574 bp each. A total of 90 protein-coding genes, 38 transfer RNA genes, and eight ribosomal RNA genes were predicted, while 106 simple sequence repeats were recorded throughout the genome. Phylogenetic analysis revealed that O. purpureiflora was sister to O. emarginata.
  12. Zhou QL, Tan ZH, Wang HX, Chen DJ, Ke XR, Zhu ZX, et al.
    Mitochondrial DNA B Resour, 2021;6(12):3386-3387.
    PMID: 34790870 DOI: 10.1080/23802359.2021.1998803
    Lannea coromandelica (Houtt.) Merr. is a deciduous tree in the family Anacardiaceae, which grows in lowland and hill forests; 100-1800 m. SW Guangdong, S Guangxi, S Yunnan [Bhutan, India, Myanmar, Nepal, Sri Lanka; cultivated elsewhere in continental SE Asia, such as in Cambodia, Laos, Malaysia, Thailand, Vietnam, where it is probably naturalized]. The length of the complete plastome is 162,460 bp, including 130 genes consisting of 85 protein-coding genes, 37 tRNA genes and 8 rRNA genes. The assembled plastome has the typical structure and gene content of angiosperms plastome, which includes two inverted repeats (IRs) regions of 26,877 bp, a large single copy (LSC) region of 89,599 bp and a small single-copy (SSC) region of 19,107 bp. The total G/C content in the plastome of L. coromandelica is 37.7%. The complete plastome sequence of L. coromandelica will provide contributions to the conservation genetics of this species as well as to phylogenetic studies in Anacardiaceae.
  13. Abdul Halim SAA, Esa Y, Gan HM, Zainudin AA, Mohd Nor SA
    Mitochondrial DNA B Resour, 2023;8(1):38-41.
    PMID: 36620317 DOI: 10.1080/23802359.2022.2158694
    The catfish, Pangasius nasutus and P. conchophilus, are often misidentified between each other due to their similar morphology. Thus, the current study was conducted to differentiate them based on a molecular approach. The complete mitochondrial genomes of P. nasutus and P. conchophilus obtained from the Pahang River (Peninsular Malaysia) were sequenced, assembled, and annotated using next-generation sequencing (NGS). A 16,465 bp and 16,470 bp length mitogenome sequence of P. nasutus and P. conchophilus, respectively, was generated, each containing 13 protein genes, 22 tRNAs, and two rRNAs, typical of most vertebrates. This is the first report of the complete mitochondrial genome sequences of P. nasutus and P. conchophilus. These data are a valuable genetic resource for future studies of these two commercially important species.
  14. Xu G, Zhang C, Lee SY, Chen Z, Zeng X
    Mitochondrial DNA B Resour, 2023;8(1):181-185.
    PMID: 36713297 DOI: 10.1080/23802359.2023.2168114
    Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae) is endemic to the tropical and subtropical regions of Africa, Asia, and Asia Pacific. In this study, the complete chloroplast genome sequence of C. dentata was assembled using next-generation sequencing data. The complete chloroplast genome was 151,662 bp in length and had a typical quadripartite structure, which consisted of a small single-copy region (21,776 bp) and a large single-copy region (82,624 bp) that were separated by a pair of inverted repeats (23,631 bp each). A total of 131 genes were predicted, including 89 protein coding (CDS), 34 tRNA, and eight rRNA genes. The overall GC content of the chloroplast genome was 42.48%. Based on the concatenated shared unique CDS sequence dataset, phylogenetic analysis using both the maximum-likelihood and the Bayesian inference methods revealed that C. dentata is placed within Thelypteridaceae and is closely related to Christella appendiculata. Such genetic information would be useful for studies on the evolution pattern in ferns. The availability of chloroplast genome sequence for the species also paves the way to resolving the complicated relationship among members of Christella.
  15. Miga M, Yap YZ, Jahari PNS, Parimannan S, Rajandas H, Abu Bakar-Latiff M, et al.
    Mitochondrial DNA B Resour, 2023;8(1):167-171.
    PMID: 36733274 DOI: 10.1080/23802359.2023.2167476
    The Great Marquis or Bassarona dunya is a butterfly species commonly found in the tropical regions of Asia, America, and Africa. This butterfly is a member of the subfamily Limenitidinae and the classification within this subfamily has been unstable. Here, we report the first complete mitochondrial genome (mitogenome) of B. dunya sampled from Malaysia. The mitogenome is 15,242 bp long, comprising a set of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and an A + T rich region. All PCGs were initiated by the typical ATN codon, except for COX1 which started with a CGA start codon. Nine PCGs were terminated with a TAA or TAG stop codon, while COX1, COX2, NAD4, and NAD5 ended with an incomplete T. The 12S and 16S rRNAs were 716 bp and 1269 bp in length, respectively. Phylogenetic analysis supported the placement of B. dunya within Limenitidinae with a high support value.
  16. Miga M, Jahari PNS, Parimannan S, Rajandas H, Latiff MAB, Jing Wei Y, et al.
    Mitochondrial DNA B Resour, 2023;8(2):292-296.
    PMID: 36845007 DOI: 10.1080/23802359.2023.2179355
    In the present study, the nearly complete mitochondrial genome of Euphaea ochracea was described and its phylogenetic position in the family Euphaeidae was analyzed. Here, we recovered 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and a partial control region, resulting in a mitogenome length of 15,545bp. All protein-coding genes were initiated by the typical ATN codon except nad3 and nad1, which utilizes the TTG codon. Four protein-coding genes (cox1, cox2, cox3 and nad5) are terminated by an incomplete stop codon T, while others end with either a TAA or TAG codon. The intergenic spacer region, S5, is absent in this mitogenome, supporting the lack of this region as a specific character in damselflies. Phylogenetic analysis showed that the newly sequenced E. ochracea is phylogenetically closer to E. ornata with a high support value.
  17. Zeng N, Gao W, Chen Z, Chong JY, Lee SY, Xu G
    Mitochondrial DNA B Resour, 2024;9(4):465-469.
    PMID: 38591052 DOI: 10.1080/23802359.2024.2316069
    Strobilanthes dalzielii of Acanthaceae is an herb species with potentially extensive applications for its pharmaceutical and ornamental values. Due to taxonomic complications and limited genetic information, the structural characteristics, and phylogenetic relationships of the S. dalzielii chloroplast genome were assembled and characterized here for the first time. The complete chloroplast genome of S. dalzielii was 144,580 bp in length. The genome is quadripartite in structure and consists of a large single-copy region (92,137 bp) and a small single-copy region (17,669 bp), which are separated by a pair of inverted repeats (each 17,387 bp). A total of 125 genes were annotated, including 80 protein-coding, 37 transfer RNA, and eight ribosomal RNA genes. The overall GC content was 36.4%. Phylogenetic analysis based on the complete chloroplast genome sequence of 21 taxa within the tribe Ruellieae of Acanthaceae using the maximum likelihood and Bayesian inference methods revealed that Strobilanthes diverged after Ruellia; S. dalzielii is closely related to S. tonkinensis. The genomic data obtained from this study will serve as valuable information to the species delimitation and genetic classification of Strobilanthes.
  18. Li J, Cai S, Lee SY, Hara Y, Wang J
    Mitochondrial DNA B Resour, 2024;9(5):588-591.
    PMID: 38716394 DOI: 10.1080/23802359.2024.2349134
    Chlorophytum laxum of Asparagaceae is a valuable ornamental plant native to the tropical regions of Asia, Africa, and Australia. The plant also has medicinal properties and is used as source for folk medicine. Despite being commercially important, genetic studies of C. laxum are still limited. To expand the genomic information of this plant species, we sequenced, assembled, and characterized its complete chloroplast genome. The chloroplast genome was 153,678 bp in length, with a large single-copy region (83,225 bp) and a small single-copy region (18,031 bp) separated by a pair of inverted repeat regions (26,211 bp each). A total of 127 genes were predicted, including 81 protein-coding, 38 tRNA, and eight rRNA genes. The overall GC content was 37.3%. Based on current sampling size, phylogenetic analysis using the maximum likelihood based on the complete chloroplast genome sequence revealed that the relationship in Chlorophytum is well resolved; C. laxum was closely related to C. rhizopendulum.
  19. Chin JH, Wong XJ, Chong TF, Muangkot P, Heng AT, Tanee T, et al.
    Mitochondrial DNA B Resour, 2024;9(4):541-545.
    PMID: 38665928 DOI: 10.1080/23802359.2024.2345773
    Pandanus amaryllifolius of Pandanaceae, a plant native to Southeast Asia, has been domesticated for its health benefits and aromatic leaves. It is also used for phytoremediation and soil rehabilitation. However, genetic studies of this species are limited. This study aims to expand its genomic information by assembling and characterizing the complete chloroplast genome of P. amaryllifolius. The chloroplast genome, which was 157,839 bp long, contains a total of 133 genes, including 87 protein-coding (CDS), 38 tRNA, and eight rRNA genes. The overall G/C content was 37.7%. A phylogenetic analysis using 79 shared unique CDS revealed a monophyletic relationship in Pandanales. Based on the limited sampling size, Pandanus amaryllifolius was the first to diverge in Pandanaceae. The genomic data will be useful for future phylogenetic and evolutionary studies of Pandanaceae.
  20. Mohd Salleh MH, Esa Y, Gan HM
    Mitochondrial DNA B Resour, 2023;8(7):719-722.
    PMID: 37426572 DOI: 10.1080/23802359.2023.2222851
    In this study, we report the nearly complete mitochondrial sequence of Batagur affinis affinis. The assembled mitogenome consists of 13 PCGs, 22 tRNA genes, two rRNAs and one near-complete D-loop region. Of the annotated genes, the ND6 subunit gene and eight tRNA genes were encoded on the L-strand, while the remaining genes were dispersed on the H-strand. Except for CO1, which has a GTG start codon, all protein-coding genes begin with ATG. The mitogenome has been deposited in NCBI GenBank under the accession number OQ409915. Phylogenetic tree analysis based on publicly available mitogenomes indicate the sister grouping of B. affinis affinis with B. kachuga.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links