Displaying publications 21 - 40 of 128 in total

Abstract:
Sort:
  1. Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S
    Nanoscale Res Lett, 2020 Nov 04;15(1):207.
    PMID: 33146807 DOI: 10.1186/s11671-020-03438-2
    Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
  2. Kamarulzaman N, Kasim MF, Rusdi R
    Nanoscale Res Lett, 2015 Dec;10(1):1034.
    PMID: 26319225 DOI: 10.1186/s11671-015-1034-9
    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.
  3. Wong YH, Cheong KY
    Nanoscale Res Lett, 2011;6:489.
    PMID: 21831264 DOI: 10.1186/1556-276X-6-489
    The band alignment of ZrO2/interfacial layer/Si structure fabricated by simultaneous oxidation and nitridation of sputtered Zr on Si in N2O at 700°C for different durations has been established by using X-ray photoelectron spectroscopy. Valence band offset of ZrO2/Si was found to be 4.75 eV, while the highest corresponding conduction offset of ZrO2/interfacial layer was found to be 3.40 eV; owing to the combination of relatively larger bandgaps, it enhanced electrical breakdown field to 13.6 MV/cm at 10-6 A/cm2.
  4. Baby R, Saifullah B, Hussein MZ
    Nanoscale Res Lett, 2019 Nov 11;14(1):341.
    PMID: 31712991 DOI: 10.1186/s11671-019-3167-8
    Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.
  5. Perumal V, Hashim U, Gopinath SC, Rajintra Prasad H, Wei-Wen L, Balakrishnan SR, et al.
    Nanoscale Res Lett, 2016 Dec;11(1):31.
    PMID: 26787050 DOI: 10.1186/s11671-016-1245-8
    Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
  6. Lim J, Yeap SP, Che HX, Low SC
    Nanoscale Res Lett, 2013;8(1):381.
    PMID: 24011350 DOI: 10.1186/1556-276X-8-381
    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.
  7. Sidik NA, Safdari A
    Nanoscale Res Lett, 2012;7(1):648.
    PMID: 23176814 DOI: 10.1186/1556-276X-7-648
    This work presents some comments concerning the paper entitled 'Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity' by Yurong He, Cong Qi, Yanwei Hu, Bin Qin, Fengchen Li and Yulong Ding which was published in Nanoscale Research Letters in 2011. The comments are related to the numerical parameters and the computed results of average Nusselt number.
  8. Ghaemi F, Abdullah LC, Kargarzadeh H, Abdi MM, Azli NFWM, Abbasian M
    Nanoscale Res Lett, 2018 Apr 20;13(1):112.
    PMID: 29679180 DOI: 10.1186/s11671-018-2508-3
    In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.
  9. Guo S, Lakshmipriya T, Gopinath SCB, Anbu P, Feng Y
    Nanoscale Res Lett, 2019 Jul 02;14(1):222.
    PMID: 31267309 DOI: 10.1186/s11671-019-3058-z
    Developing an enhanced diagnosis using biosensors is important for the treatment of patients before disease complications arise. Improving biosensors would enable the detection of various low-abundance disease biomarkers. Efficient immobilization of probes/receptors on the sensing surface is one of the efficient ways to enhance detection. Herein, we introduced the pre-alkaline sensing surface with amine functionalization for capturing gold nanoparticle (GNP) conjugated to human blood clotting factor IX (FIX), and we demonstrated the excellent performance of the strategy. We have chosen the enzyme-linked immunosorbent assay (ELISA) and the interdigitated electrode (IDE), which are widely used, to demonstrate our method. The optimal amount for silanization has been found to be 2.5%, and 15-nm-sized GNPs are ideal and characterized. The limit of FIX detection was attained with ELISA at 100 pM with the premixed GNPs and FIX, which shows 60-fold improvement in sensitivity without biofouling, as compared to the conventional ELISA. Further, FIX was detected with higher specificity in human serum at a 1:1280 dilution, which is equivalent to 120 pM FIX. These results were complemented by the analysis on IDE, where improved detection at 25 pM was achieved, and FIX was detected in human serum at the dilution of 1:640. These optimized surfaces are useful for improving the detection of different diseases on varied sensing surfaces.
  10. Ali AA, Hashim AM
    Nanoscale Res Lett, 2016 Dec;11(1):246.
    PMID: 27173675 DOI: 10.1186/s11671-016-1466-x
    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively.
  11. Kiani MJ, Harun FK, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M
    Nanoscale Res Lett, 2014;9(1):371.
    PMID: 25114659 DOI: 10.1186/1556-276X-9-371
    Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.
  12. Qian G, Rahman SA, Goh BT
    Nanoscale Res Lett, 2015 Dec;10(1):980.
    PMID: 26100555 DOI: 10.1186/s11671-015-0980-6
    Ni-catalyzed Si-based heterostructure nanowires grown on crystal Si substrates by hot-wire chemical vapor deposition (HWCVD) were studied. The nanowires which included NiSi nanowires, NiSi/Si core-shell nanowires, and NiSi/SiC core-shell nanowires were grown by varying the filament temperature T f from 1150 to 1850 °C. At a T f of 1450 °C, the heterostructure nanowires were formed by crystalline NiSi and crystalline Si that were attributed to the core and shell of the nanowires, respectively. The morphology of the nanowires showed significant changes with the increase in the filament temperature to 1850 °C. Moreover, the effect of hydrogen heat transfer from the filament temperature demonstrated significant phase changes from NiSi to Ni2Si with increase in the filament temperature. The increased filament temperature also enhanced reactions in the gas phase thus generating more SiC clusters and consequently formed the NiSi/SiC heterostructure core-shell nanowires at T f of 1850 °C. This paper discusses the role of filament temperatures on the growth and constituted phase change of the nanowires as well as their electrical characteristics.
  13. Bakar NA, Supangat A, Sulaiman K
    Nanoscale Res Lett, 2014;9(1):600.
    PMID: 25392707 DOI: 10.1186/1556-276X-9-600
    In this study, the synthesis of poly [N-9'-heptadecanyl-2, 7-carbazole-alt-5, 5-(4', 7'-di-2-thienyl-2', 1', 3'-benzothiadiazole)] (PCDTBT) nanotubes via a templating method is reported. PCDTBT nanotubes were successfully grown by immersing the porous alumina template into 15 mg/ml of solution concentration for 2- and 24-h periods and annealed at 50°C. Changes in morphological and optical properties between nanotubes of different infiltration times (2 and 24 h) as well as its thin films are observed. The longer infiltration time of 24 h produced nanotubes with enhanced morphological, structural, and optical properties. Nanotubes that are formed between 2 and 24 h of infiltration show enhancement in absorption, photoluminescence, and shift in Raman peak if compared to their thin films.
  14. Ali AA, Hashim AM
    Nanoscale Res Lett, 2015 Dec;10(1):1008.
    PMID: 26198282 DOI: 10.1186/s11671-015-1008-y
    The dissociation of zinc ions (Zn(2+)) from vapor-phase zinc acetylacetonate, Zn(C5H7O2)2, or Zn(acac)2 and its adsorption onto graphene oxide via atomic layer deposition (ALD) were studied using a quantum mechanics approach. Density functional theory (DFT) was used to obtain an approximate solution to the Schrödinger equation. The graphene oxide cluster model was used to represent the surface of the graphene film after pre-oxidation. In this study, the geometries of reactants, transition states, and products were optimized using the B3LYB/6-31G** level of theory or higher. Furthermore, the relative energies of the various intermediates and products in the gas-phase radical mechanism were calculated at the B3LYP/6-311++G** and MP2/6-311 + G(2df,2p) levels of theory. Additionally, a molecular orbital (MO) analysis was performed for the products of the decomposition of the Zn(acac)2 complex to investigate the dissociation of Zn(2+) and the subsequent adsorption of H atoms on the C5H7O2 cluster to form acetylacetonate enol. The reaction energies were calculated, and the reaction mechanism was accordingly proposed. A simulation of infrared (IR) properties was performed using the same approach to support the proposed mechanism via a complete explanation of bond forming and breaking during each reaction step.
  15. Hoque A, Islam MT, Almutairi AF, Faruque MRI
    Nanoscale Res Lett, 2019 Dec 26;14(1):393.
    PMID: 31879809 DOI: 10.1186/s11671-019-3231-4
    Solar energy is one of the ambient sources where energy can be scavenged easily without pollution. Intent scavenging by the solar cell to recollect energy requires a state-of-the-art technique to expedite energy absorption to electron flow for producing more electricity. Structures of the solar cell have been researched to improve absorption efficiency, though most of them can only efficiently absorb with narrow-angle tolerance and polarization sensitivity. So, there is a strong demand for broadband absorption with minimal polarization sensitivity absorber, which is required for effective solar energy harvesting. In this paper, we proposed a new Split Hexagonal Patch Array (SHPA) shape metamaterial absorber with Double-negative (DNG) characteristics, which will provide a wide absorption band with low polarization sensitivity for solar spectrum energy harvesting. The proposed new SHPA shape consists of six nano-arms with a single vertical split which with arrowhead symmetry. This arm will steer electromagnetic (EM) resonance to acquire absolute negative permittivity and permeability, ensuring DNG property. This DNG metamaterial features analyzed based on the photoconversion quantum method for maximum photon absorption. The symmetric characteristics of the proposed structure enable the absorber to show polarization insensitivity and wide incident angle absorption capabilities. Simulated SHPA shows a visible and ultraviolet (UV) spectrum electromagnetic wave absorption capacity of more than 95%. The quantum method gives an advantage in the conversion efficiency of the absorber, and the numerical analysis of the proposed SHPA structure provides absorbance quality for THz regime energy harvesting through solar cell or photonic application.
  16. Lu B, Liu L, Wang J, Chen Y, Li Z, Gopinath SCB, et al.
    Nanoscale Res Lett, 2020 May 11;15(1):105.
    PMID: 32394009 DOI: 10.1186/s11671-020-03331-y
    Abdominal aortic aneurysm (AAA) refers to the enlargement of the lower artery of the abdominal aorta, and identification of an early detection tool is urgently needed for diagnosis. In the current study, an interdigitated electrode (IDE) sensing surface was used to identify miRNA-335-5p, which reflects the formation of AAAs. The uniformity of the silica material was observed by 3D profilometry, and the chemically modified highly conductive surface improved the detection via the I-V mode. The targeted miRNA-335-5p was detected in a dose-dependent manner and based on linear regression and 3σ analyses, the sensitivity was determined to be 1 fM with a biotinylated probe. The high specificity was shown by discriminating the target sequence from noncomplementary and single- and triple-mismatched sequences. These outputs demonstrated the high-performance detection of miRNA-335-5p with good reproducibility for determination of the severity of AAA.
  17. Doris M, Aziz F, Alhummiany H, Bawazeer T, Alsenany N, Mahmoud A, et al.
    Nanoscale Res Lett, 2017 Dec;12(1):67.
    PMID: 28116608 DOI: 10.1186/s11671-017-1851-0
    In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1-b;3,4-b')dithiophen]-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.
  18. Karimi H, Yusof R, Rahmani R, Hosseinpour H, Ahmadi MT
    Nanoscale Res Lett, 2014;9(1):71.
    PMID: 24517158 DOI: 10.1186/1556-276X-9-71
    : The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.
  19. Tan ML, Lentaris G, Amaratunga Aj G
    Nanoscale Res Lett, 2012;7(1):467.
    PMID: 22901374
    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.
  20. Goh LP, Razak KA, Ridhuan NS, Cheong KY, Ooi PC, Aw KC
    Nanoscale Res Lett, 2012;7(1):563.
    PMID: 23046949 DOI: 10.1186/1556-276X-7-563
    This study describes a novel fabrication technique to grow gold nanoparticles (AuNPs) directly on seeded ZnO sacrificial template/polymethylsilsesquioxanes (PMSSQ)/Si using low-temperature hydrothermal reaction at 80°C for 4 h. The effect of non-annealing and various annealing temperatures, 200°C, 300°C, and 400°C, of the ZnO-seeded template on AuNP size and distribution was systematically studied. Another PMMSQ layer was spin-coated on AuNPs to study the memory properties of organic insulator-embedded AuNPs. Well-distributed and controllable AuNP sizes were successfully grown directly on the substrate, as observed using a field emission scanning electron microscope followed by an elemental analysis study. A phase analysis study confirmed that the ZnO sacrificial template was eliminated during the hydrothermal reaction. The AuNP formation mechanism using this hydrothermal reaction approach was proposed. In this study, the AuNPs were charge-trapped sites and showed excellent memory effects when embedded in PMSSQ. Optimum memory properties of PMMSQ-embedded AuNPs were obtained for AuNPs synthesized on a seeded ZnO template annealed at 300°C, with 54 electrons trapped per AuNP and excellent current-voltage response between an erased and programmed device.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links