Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, et al.
    PMID: 37991539 DOI: 10.1007/s00210-023-02830-w
    Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties. This picture was generated with BioRender.
  2. Corrie L, Singh H, Gulati M, Vishwas S, Chellappan DK, Gupta G, et al.
    PMID: 38507103 DOI: 10.1007/s00210-024-03029-3
    The gut microbiome is involved in the pathogenesis of many diseases including polycystic ovarian syndrome (PCOS). Modulating the gut microbiome can lead to eubiosis and treatment of various metabolic conditions. However, there is no proper study assessing the delivery of microbial technology for the treatment of such conditions. The present study involves the development of guar gum-pectin-based solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing curcumin (CCM) and fecal microbiota extract (FME) for the treatment of PCOS. The optimized S-SNEDDS containing FME and CCM was prepared by dissolving CCM (25 mg) in an isotropic mixture consisting of Labrafil M 1944 CS, Transcutol P, and Tween-80 and solidified using lactose monohydrate, aerosil-200, guar gum, and pectin (colon-targeted CCM solid self-nanoemulsifying drug delivery system [CCM-CT-S-SNEDDS]). Pharmacokinetic and pharmacodynamic evaluation was carried out on letrozole-induced female Wistar rats. The results of pharmacokinetic studies indicated about 13.11 and 23.48-fold increase in AUC of CCM-loaded colon-targeted S-SNEDDS without FME (CCM-CT-S-SNEDDS (WFME)) and CCM-loaded colon-targeted S-SNEDDS with FME [(CCM-CT-S-SNEDDS (FME)) as compared to unprocessed CCM. The pharmacodynamic study indicated excellent recovery/reversal in the rats treated with CCM-CT-S-SNEDDS low and high dose containing FME (group 13 and group 14) in a dose-dependent manner. The developed formulation showcasing its improved bioavailability, targeted action, and therapeutic activity in ameliorating PCOS can be utilized as an adjuvant therapy for developing a dosage form, scale-up, and technology transfer.
  3. Chaudhry GE, Zeenia, Sharifi-Rad J, Calina D
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Apr;397(4):1919-1934.
    PMID: 37594522 DOI: 10.1007/s00210-023-02645-9
    Cancer is a complex disease characterized by dysregulated cell growth and division, posing significant challenges for effective treatment. Hispidulin, a flavonoid compound, has shown promising biological effects, particularly in the field of anticancer research. The main objective of this study is to investigate the anticancer properties of hispidulin and gain insight into its mechanistic targets in cancer cells. A comprehensive literature review was conducted to collect data on the anticancer effects of hispidulin. In vitro and in vivo studies were analyzed to identify the molecular targets and underlying mechanisms through which hispidulin exerts its anticancer activities. Hispidulin has shown significant effects on various aspects of cancer, including cell growth, proliferation, cell cycle regulation, angiogenesis, metastasis, and apoptosis. It has been observed to target both extrinsic and intrinsic apoptotic pathways, regulate cell cycle arrest, and modulate cancer progression pathways. The existing literature highlights the potential of hispidulin as a potent anticancer agent. Hispidulin exhibits promising potential as a therapeutic agent for cancer treatment. Its ability to induce apoptosis and modulate key molecular targets involved in cancer progression makes it a valuable candidate for further investigation. Additional pharmacological studies are needed to fully understand the specific targets and signaling pathways influenced by hispidulin in different types of cancer. Further research will contribute to the successful translation of hispidulin into clinical settings, allowing its utilization in conventional and advanced cancer therapies with improved therapeutic outcomes and reduced side effects.
  4. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
  5. Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, et al.
    PMID: 37917370 DOI: 10.1007/s00210-023-02809-7
    Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
  6. Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Nov;396(11):2769-2792.
    PMID: 37219615 DOI: 10.1007/s00210-023-02522-5
    Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
  7. Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 07;392(7):755-771.
    PMID: 31098696 DOI: 10.1007/s00210-019-01666-7
    Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
  8. Al Batran R, Al-Bayaty F, Al-Obaidi MM, Ashrafi A
    Naunyn Schmiedebergs Arch Pharmacol, 2014 Dec;387(12):1141-52.
    PMID: 25172523 DOI: 10.1007/s00210-014-1041-x
    Atherosclerosis is the commonest and most important vascular disease. Andrographolide (AND) is the main bioactive component of the medicinal plant Andrographis paniculata and is used in traditional medicine. This study was aimed to evaluate the antiatherogenic effect of AND against atherosclerosis induced by Porphyromonas gingivalis in White New Zealand rabbits. Thirty rabbits were divided into five groups as follows: G1, normal group; G2-5, were orally challenged with P. gingivalis five times a week over 12 weeks; G2, atherogenic control group; G3, standard group treated with atorvastatin (AV) 5 mg/kg; and G4 and G5, treatment groups treated with AND 10 and 20 mg/kg, respectively over 12 weeks. Serums were subjected to antioxidant enzymatic and anti-inflammatory activities, and the aorta was subjected to histological analyses. Groups treated with AND showed a significant reversal of liver and renal biochemical changes, compared with the atherogenic control group. In the same groups, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total glutathione (GSH) levels in serum were significantly increased (P < 0.05), and lipid peroxidation (malondialdehyde (MDA)) levels were significantly decreased (P < 0.05), respectively. Furthermore, treated groups with AV and AND showed significant decrease in the level of VCAM-1 and ICAM-1 compared with the atherogenic control group. In aortic homogenate, the level of nitrotyrosine was significantly increased, while the level of MCP1 was significantly decreased in AV and AND groups compared with the atherogenic control group. In addition, staining the aorta with Sudan IV showed a reduction in intimal thickening plaque in AV and AND groups compared with the atherogenic control group. AND has showed an antiatherogenic property as well as the capability to reduce lipid, liver, and kidney biomarkers in atherogenic serum that prevents atherosclerosis complications caused by P. gingivalis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links