Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Tan GW, Visser L, Tan LP, van den Berg A, Diepstra A
    Pathogens, 2018 04 13;7(2).
    PMID: 29652813 DOI: 10.3390/pathogens7020040
    The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
  2. Shafie NJ, Halim NSA, Awoniyi AM, Zalipah MN, Md-Nor S, Nazri MUIA, et al.
    Pathogens, 2022 Nov 05;11(11).
    PMID: 36365051 DOI: 10.3390/pathogens11111300
    Leptospirosis is an important zoonotic disease that is transmitted worldwide through infected small mammals such as rodents. In Malaysia, there is a paucity of information on the animal reservoirs that are responsible for leptospirosis transmission, with only a few studies focusing on leptospirosis risk in recreational areas. Therefore, in this study we characterized the species composition and the prevalence of pathogenic Leptospira spp. in non-volant small mammals of Hutan Lipur Sekayu, Terengganu. We performed ten trapping sessions totaling 3000 trappings between September 2019 and October 2020. Kidney samples from captured individuals were extracted for the PCR detection of pathogenic Leptospira spp. Overall, we captured 45 individuals from 8 species (1.56% successful trapping effort), with 9 individuals testing positive for pathogenic Leptospira, that is, a 20% (n = 9/45) prevalence rate. Rattus tiomanicus (n = 22) was the most dominant captured species and had the highest positive individual with pathogenic Leptospira (44.4%, n = 4/9). Despite the low successful trapping effort in this study, the results show the high diversity of non-volant small mammals in Hutan Lipur Sekayu, and that they could also maintain and transmit pathogenic Leptospira.
  3. Al-Trad EI, Che Hamzah AM, Puah SM, Chua KH, Kwong SM, Yeo CC, et al.
    Pathogens, 2022 Nov 23;11(12).
    PMID: 36558739 DOI: 10.3390/pathogens11121406
    Staphylococcus hominis is a coagulase-negative Staphylococcus (CoNS) commensal capable of causing serious systemic infections in humans. The emergence of multidrug-resistant S. hominis strains is of concern but little is known about the characteristics of this organism, particularly from Malaysia. Here, we present the comparative genome analysis of S. hominis ShoR14, a multidrug-resistant, methicillin-resistant blood isolate from Terengganu, Malaysia. Genomic DNA of S. hominis ShoR14 was sequenced on the Illumina platform and assembled using Unicycler v0.4.8. ShoR14 belonged to sequence type (ST) 1 which is the most prevalent ST of the S. hominis subsp. hominis. Comparative genomic analysis with closely related strains in the database with complete genome sequences, led to the discovery of a novel variant of the staphylococcal chromosome cassette mec (SCCmec) type VIII element harboring the mecA methicillin-resistance gene in ShoR14 and its possible carriage of a SCCfus element that encodes the fusidic acid resistance gene (fusC). Up to seven possible ShoR14 plasmid contigs were identified, three of which harbored resistance genes for tetracycline (tetK), chloramphenicol (catA7), macrolides, lincosamides, and streptogramin B (ermC). Additionally, we report the discovery of a novel mercury-resistant transposon, Tn7456, other genomic islands, and prophages which make up the S. hominis mobilome.
  4. Najib MA, Mustaffa KMF, Ong EBB, Selvam K, Khalid MF, Awang MS, et al.
    Pathogens, 2021 Sep 13;10(9).
    PMID: 34578216 DOI: 10.3390/pathogens10091184
    Typhoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever. A literature search was conducted using three databases (PubMed, ProQuest and Scopus) and manual searches through the references of identified full texts to retrieve relevant literature published between 1 January 2011 and 31 December 2020. Of the 577 studies identified in our search, 12 were included in further analysis. Lipopolysaccharides (LPS) and hemolysin E (HlyE) were the most frequently studied antigens. The specimens examined in these studies included serum and saliva. Using blood culture as the gold standard, anti-LPS IgA gave the highest sensitivity of 96% (95% CI: 93-99) and specificity of 96% (95% CI: 93-99) for distinguishing between typhoid cases and healthy controls, whereas the combination of anti-LPS and anti-flagellin total IgGAM gave the highest sensitivity of 93% (95% CI: 86-99) and specificity of 95% (95% CI: 89-100) for distinguishing typhoid cases and other febrile infections. A comparably high sensitivity of 92% (95% CI: 86-98) and specificity of 89% (95% CI: 78-100) were shown in testing based on detection of the combination of anti-LPS (IgA and IgM) and anti-HlyE IgG as well as a slightly lower sensitivity of 91% (95% CI: 74-100) in the case of anti-50kDa IgA. Anti-50kDa IgM had the lowest sensitivity of 36% (95% CI: 6-65) against both healthy and febrile controls. The development of a rapid diagnostic test targeting antibodies against lipopolysaccharides combined with flagellin appeared to be a suitable approach for the rapid detection test of typhoid fever. Saliva is added benefit for rapid typhoid diagnosis since it is less invasive. As a result, further studies could be done to develop additional approaches for adopting such samples.
  5. Mohd Hussain RH, Abdul Ghani MK, Khan NA, Siddiqui R, Aazmi S, Halim H, et al.
    Pathogens, 2022 Dec 05;11(12).
    PMID: 36558808 DOI: 10.3390/pathogens11121474
    Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45-230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9-59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research.
  6. Ahmad I, Ullah S, Alouffi A, Almutairi MM, Khan M, Numan M, et al.
    Pathogens, 2022 Dec 08;11(12).
    PMID: 36558829 DOI: 10.3390/pathogens11121495
    Haemaphysalis ticks are globally distributed with the greatest diversity in the Oriental region. This study aimed to primarily provide information on the morphology, host record, and preliminary phylogenetic position of a poorly known tick Haemaphysalis danieli. Herds comprised of goats and sheep were examined for this tick species in Upper Dir, Khyber Pakhtunkhwa, Pakistan. A total of 127 ticks, including males (n = 15, 11.8%) and females (n = 112, 88.2%), were collected, and morphologically identified as H. danieli. The morphological identification was confirmed through the 16S rDNA and cytochrome c oxidase (cox1) sequences. Phylogenetic analysis inferred based on 16S rDNA and cox1 showed a close evolutionary relationship of H. danieli with a conspecific from China and an undetermined Haemaphysalis sp. from China and Anatolia. A total of 32/223 (14.3%) goats in two different herds were the only host infested by H. danieli. The earliest study provided the morphological description of H. danieli male, host record, and phylogenetic position. The information provided herein could assist in minimizing the knowledge gap regarding the systematic and taxonomy of Haemaphysalis species.
  7. Chen A, Sun J, Viljoen A, Mostert D, Xie Y, Mangila L, et al.
    Pathogens, 2023 Jun 09;12(6).
    PMID: 37375510 DOI: 10.3390/pathogens12060820
    Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.
  8. Ngoi ST, Muhamad AN, Teh CSJ, Chong CW, Abdul Jabar K, Chai LC, et al.
    Pathogens, 2021 Dec 09;10(12).
    PMID: 34959557 DOI: 10.3390/pathogens10121602
    The rise of antimicrobial resistance (AMR) among clinically important bacteria, including respiratory pathogens, is a growing concern for public health worldwide. Common causative bacteria for upper respiratory tract infections (URTIs) include Streptococcus pneumoniae and Haemophilus influenzae, and sometimes Staphylococcus aureus. We assessed the β-lactam resistant trends and mechanisms of 150 URTI strains isolated in a tertiary care hospital in Kuala Lumpur Malaysia. High rates of non-susceptibility to penicillin G (38%), amoxicillin-clavulanate (48%), imipenem (60%), and meropenem (56%) were observed in S. pneumoniae. Frequent mutations at STMK and SRNVP motifs in PBP1a (41%), SSNT motif in PBP2b (32%), and STMK and LKSG motifs in PBP2x (41%) were observed in S. pneumoniae. H. influenzae remained highly susceptible to most β-lactams, except for ampicillin. Approximately half of the ampicillin non-susceptible H. influenzae harboured PBP3 mutations (56%) and only blaTEM was detected in the ampicillin-resistant strains (47%). Methicillin-susceptible S. aureus (MSSA) strains were mostly resistant to penicillin G (92%), with at least two-fold higher median minimum inhibitory concentrations (MIC) for all penicillin antibiotics (except ticarcillin) compared to S. pneumoniae and H. influenzae. Almost all URTI strains (88-100%) were susceptible to cefcapene and flomoxef. Overall, β-lactam antibiotics except penicillins remained largely effective against URTI pathogens in this region.
  9. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Zasmy Unyah N, Alhassan Abdullahi S, Ahmad Issa Alapid A, et al.
    Pathogens, 2020 Jul 16;9(7).
    PMID: 32708648 DOI: 10.3390/pathogens9070576
    The major route for Toxoplasma gondii (T. gondii) infection is through the ingestion of foods contaminated with oocyst from cat faeces. The microscopic detection of T. gondii oocysts in cat faeces is challenging, which contributes to the failure of detecting or differentiating it from other related coccidian parasites. This study aims to detect T. gondii oocysts in cat faeces using two multicopy-target PCR assays and to evaluate their genetic diversity. Cat faecal (200) samples were collected from pet cats (PCs; 100) and free-roaming cats (FRCs; 100) within Klang Valley, Malaysia, and screened for coccidian oocysts by microscopy using Sheather's sucrose floatation. PCR assays were performed on each faecal sample, targeting a B1 gene and a repetitive element (REP) gene to confirm T. gondii oocysts. Additionally, the PCR amplicons from the REP gene were sequenced to further confirm T. gondii-positive samples for phylogenetic analysis. Microscopy detected 7/200 (3.5%) T. gondii-like oocysts, while both the B1 gene and the REP gene detected 17/200 (8.5%) samples positive for T. gondii. All samples that were microscopically positive for T. gondii-like oocysts were also shown to be positive by both B1 and REP genes. The BLAST results sequenced for 16/200 (8.0%) PCR-positive T. gondii samples revealed homology and genetic heterogeneity with T. gondii strains in the GenBank, except for only one positive sample that did not show a result. There was almost perfect agreement (k = 0.145) between the two PCR assays targeting the B1 gene and the REP gene. This is the first report on microscopic, molecular detection and genetic diversity of T. gondii from cat faecal samples in Malaysia. In addition, the sensitivities of either the B1 gene or REP gene multicopy-target PCR assays are suitable for the accurate detection of T. gondii from cat faeces.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links