Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Tan GW, Visser L, Tan LP, van den Berg A, Diepstra A
    Pathogens, 2018 04 13;7(2).
    PMID: 29652813 DOI: 10.3390/pathogens7020040
    The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
  2. Rawle DJ, Nguyen W, Dumenil T, Parry R, Warrilow D, Tang B, et al.
    Pathogens, 2020 Oct 16;9(10).
    PMID: 33081269 DOI: 10.3390/pathogens9100848
    Getah virus (GETV) is a mosquito-transmitted alphavirus primarily associated with disease in horses and pigs in Asia. GETV was also reported to have been isolated from mosquitoes in Australia in 1961; however, retrieval and sequencing of the original isolates (N544 and N554), illustrated that these viruses were virtually identical to the 1955 GETVMM2021 isolate from Malaysia. K-mer mining of the >40,000 terabases of sequence data in the Sequence Read Archive followed by BLASTn confirmation identified multiple GETV sequences in biosamples from Asia (often as contaminants), but not in biosamples from Australia. In contrast, sequence reads aligning to the Australian Ross River virus (RRV) were readily identified in Australian biosamples. To explore the serological relationship between GETV and other alphaviruses, an adult wild-type mouse model of GETV was established. High levels of cross-reactivity and cross-protection were evident for convalescent sera from mice infected with GETV or RRV, highlighting the difficulties associated with the interpretation of early serosurveys reporting GETV antibodies in Australian cattle and pigs. The evidence that GETV circulates in Australia is thus not compelling.
  3. Ananth S, Shrestha N, Treviño C JA, Nguyen US, Haque U, Angulo-Molina A, et al.
    Pathogens, 2020 Nov 19;9(11).
    PMID: 33228120 DOI: 10.3390/pathogens9110964
    Arboviruses such as Chikungunya (CHIKV), Dengue (DENV), and Zika virus (ZIKV) have emerged as a significant public health concern in Mexico. The existing literature lacks evidence regarding the dispersion of arboviruses, thereby limiting public health policy's ability to integrate the diagnosis, management, and prevention. This study seeks to reveal the clinical symptoms of CHIK, DENV, and ZIKV by age group, region, sex, and time across Mexico. The confirmed cases of CHIKV, DENV, and ZIKV were compiled from January 2012 to March 2020. Demographic characteristics analyzed significant clinical symptoms of confirmed cases. Multinomial logistic regression was used to assess the association between clinical symptoms and geographical regions. Females and individuals aged 15 and older had higher rates of reported significant symptoms across all three arboviruses. DENV showed a temporal variation of symptoms by regions 3 and 5, whereas ZIKV presented temporal variables in regions 2 and 4. This study revealed unique and overlapping symptoms between CHIKV, DENV, and ZIKV. However, the differentiation of CHIKV, DENV, and ZIKV is difficult, and diagnostic facilities are not available in rural areas. There is a need for adequately trained healthcare staff alongside well-equipped lab facilities, including hematological tests and imaging facilities.
  4. Nusrat T, Akter N, Haque M, Rahman NAA, Dewanjee AK, Ahmed S, et al.
    Pathogens, 2019 Sep 12;8(3).
    PMID: 31547453 DOI: 10.3390/pathogens8030151
    BACKGROUND: Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in intensive care units (ICU), which accounts for 25% of all ICU infection. Documenting carbapenem-resistant gram-negative bacilli is very important as these strains may often cause outbreaks in the ICU setting and are responsible for the increased mortality and morbidity or limiting therapeutic options. The classical phenotypic method cannot provide an efficient means of diagnosis of the metallo-β-lactamases (MBLs) producer. Polymerase chain reaction (PCR) assays have lessened the importance of the phenotypic approach by detecting metallo-β-lactamase resistance genes such as New Delhi metallo-β-lactamase (NDM), Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), Sao Paulo metallo-β-lactamase (SPM), Germany Imipenemase (GIM).

    OBJECTIVE: To compare the results of the Combined Disc Synergy Test (CDST) with that of the multiplex PCR to detect MBL-producing gram-negative bacilli.

    MATERIALS AND METHOD: A total of 105 endotracheal aspirates (ETA) samples were collected from the ICU of a public school in Bangladesh. This cross-sectional study was carried out in the Department of Microbiology, Chittagong for quantitative culture, CDST test, and multiplex PCR for blaIMP, blaVIM, blaNDM genes of MBL producers.

    RESULTS: Among the 105 clinically suspected VAP cases, the quantitative culture was positive in 95 (90%) and among 95 g-negative bacilli isolated from VAP patients, 46 (48.42%) were imipenem resistant, 30 (65.22%) were MBL producers by CDST, 21 (45.65%) were identified as MBL producers by multiplex PCR.

    CONCLUSION: PCR was highly sensitive and specific for the detection of MBL producers.

  5. Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-Drasekaran S, Palanisamy R, et al.
    Pathogens, 2021 Feb 01;10(2).
    PMID: 33535649 DOI: 10.3390/pathogens10020145
    Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
  6. Lau MY, Teng FE, Chua KH, Ponnampalavanar S, Chong CW, Abdul Jabar K, et al.
    Pathogens, 2021 Mar 02;10(3).
    PMID: 33801250 DOI: 10.3390/pathogens10030279
    The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great concern, as carbapenems are the last-line therapy for multidrug-resistant Gram-negative bacteria infections. This study aims to report the epidemiology of CRKP in a teaching hospital in Malaysia based on the molecular genotypic and clinical characteristics of the isolates. Sixty-three CRKP strains were isolated from a tertiary teaching hospital from January 2016 until August 2017. Carbapenemase genes were detected in 55 isolates, with blaOXA-48 (63.5%) as the predominant carbapenemase gene, followed by blaNDM (36.5%). At least one porin loss was detected in nine isolates. Overall, 63 isolates were divided into 30 clusters at similarity of 80% with PFGE analysis. Statistical analysis showed that in-hospital mortality was significantly associated with the usage of central venous catheter, infection or colonization by CRKP, particularly NDM-producers. In comparison, survival analysis using Cox proportional hazards regression identified a higher hazard ratio for patients with a stoma and patients treated with imipenem but a lower hazard ratio for patients with NDM-producing CRKP. OXA-48 carbapenemase gene was the predominant carbapenemase gene in this study. As CRKP infection could lead to a high rate of in-hospital mortality, early detection of the isolates was important to reduce their dissemination.
  7. Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al.
    Pathogens, 2019 Nov 22;8(4).
    PMID: 31766722 DOI: 10.3390/pathogens8040260
    T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
  8. Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR
    Pathogens, 2020 May 25;9(5).
    PMID: 32466289 DOI: 10.3390/pathogens9050412
    Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis.

    METHODS: The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells.

    RESULTS: The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells.

    CONCLUSION: This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.

  9. Aupalee K, Saeung A, Srisuka W, Fukuda M, Streit A, Takaoka H
    Pathogens, 2020 Jun 25;9(6).
    PMID: 32630410 DOI: 10.3390/pathogens9060512
    The transmission of zoonotic filarial parasites by black flies has so far been reported in the Chiang Mai and Tak provinces, Thailand, and the bites of these infected black flies can cause a rare disease-human zoonotic onchocerciasis. However, species identification of the filarial parasites and their black fly vectors in the Chiang Mai province were previously only based on a morphotaxonomic analysis. In this study, a combined approach of morphotaxonomic and molecular analyses (mitochondrial cox1, 12S rRNA, and nuclear 18S rRNA (SSU HVR-I) genes) was used to clarify the natural filarial infections in female black flies collected by using human and swine baits from two study areas (Ban Lek and Ban Pang Dang) in the Chiang Mai province from March 2018 to January 2019. A total of 805 and 4597 adult females, belonging to seven and nine black fly taxa, were collected from Ban Lek and Ban Pang Dang, respectively. At Ban Lek, four of the 309 adult females of Simulium nigrogilvum were positive for Onchocerca species type I in the hot and rainy seasons. At Ban Pang Dang, five unknown filarial larvae (belonging to the same new species) were detected in Simulium sp. in the S. varicorne species-group and in three species in the S. asakoae species-group in all seasons, and three non-filarial larvae of three different taxa were also found in three females of the S. asakoae species-group. This study is the first to molecularly identify new filarial species and their vector black fly species in Thailand.
  10. Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H
    Pathogens, 2020 Aug 25;9(9).
    PMID: 32854179 DOI: 10.3390/pathogens9090697
    Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. Additionally, jaundice, increases in hepatic enzymes, and variable leukocyte count changes are seen. Theileria annulata and Theileria parva induce an incomplete transformation of lymphoid and myeloid cell lineages, and these cells possess certain phenotypes of cancer cells. Pathogenic genotypes of Theileria orientalis have been recently associated with severe production losses in Southeast Asia and some parts of Europe. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated. This review, therefore, provides an overview of the clinicopathological and immunopathological profiles of Theileria-infected cattle and focus on DNA vaccines consisting of plasmid DNA with genes of interest, molecular adjuvants, and chitosan as the most promising next-generation vaccine against bovine theileriosis.
  11. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Zasmy Unyah N, Alhassan Abdullahi S, Ahmad Issa Alapid A, et al.
    Pathogens, 2020 Jul 16;9(7).
    PMID: 32708648 DOI: 10.3390/pathogens9070576
    The major route for Toxoplasma gondii (T. gondii) infection is through the ingestion of foods contaminated with oocyst from cat faeces. The microscopic detection of T. gondii oocysts in cat faeces is challenging, which contributes to the failure of detecting or differentiating it from other related coccidian parasites. This study aims to detect T. gondii oocysts in cat faeces using two multicopy-target PCR assays and to evaluate their genetic diversity. Cat faecal (200) samples were collected from pet cats (PCs; 100) and free-roaming cats (FRCs; 100) within Klang Valley, Malaysia, and screened for coccidian oocysts by microscopy using Sheather's sucrose floatation. PCR assays were performed on each faecal sample, targeting a B1 gene and a repetitive element (REP) gene to confirm T. gondii oocysts. Additionally, the PCR amplicons from the REP gene were sequenced to further confirm T. gondii-positive samples for phylogenetic analysis. Microscopy detected 7/200 (3.5%) T. gondii-like oocysts, while both the B1 gene and the REP gene detected 17/200 (8.5%) samples positive for T. gondii. All samples that were microscopically positive for T. gondii-like oocysts were also shown to be positive by both B1 and REP genes. The BLAST results sequenced for 16/200 (8.0%) PCR-positive T. gondii samples revealed homology and genetic heterogeneity with T. gondii strains in the GenBank, except for only one positive sample that did not show a result. There was almost perfect agreement (k = 0.145) between the two PCR assays targeting the B1 gene and the REP gene. This is the first report on microscopic, molecular detection and genetic diversity of T. gondii from cat faecal samples in Malaysia. In addition, the sensitivities of either the B1 gene or REP gene multicopy-target PCR assays are suitable for the accurate detection of T. gondii from cat faeces.
  12. Boonhok R, Sangkanu S, Chuprom J, Srisuphanunt M, Norouzi R, Siyadatpanah A, et al.
    Pathogens, 2021 Jul 04;10(7).
    PMID: 34357992 DOI: 10.3390/pathogens10070842
    Peganum harmala, a well-known medicinal plant, has been used for several therapeutic purposes as it contains numerous pharmacological active compounds. Our study reported an anti-parasitic activity of P. harmala seed extract against Acanthamoeba triangularis. The stress induced by the extract on the surviving trophozoites for Acanthamoeba encystation and vacuolization was examined by microscopy, and transcriptional expression of Acanthamoeba autophagy-related genes was investigated by quantitative PCR. Our results showed that the surviving trophozoites were not transformed into cysts, and the number of trophozoites with enlarged vacuoles were not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of tested AcATG genes, i.e., ATG3, ATG8b, and ATG16, was at a basal level along the treatment. However, upregulation of AcATG16 at 24 h post treatment was observed, which may indicate an autophagic activity of this protein in response to the stress. Altogether, these data revealed the anti-Acanthamoeba activity of P. harmala extract and indicated the association of autophagy mRNA expression and cyst formation under the extract stress, representing a promising plant for future drug development. However, further identification of an active compound and a study of autophagy at the protein level are needed.
  13. Mohd Abd Razak MR, Norahmad NA, Md Jelas NH, Afzan A, Mohmad Misnan N, Mat Ripen A, et al.
    Pathogens, 2021 Apr 21;10(5).
    PMID: 33919457 DOI: 10.3390/pathogens10050501
    The role of Carica papaya L. leaf juice in immune dysregulation caused by dengue virus infection remains unclear. This study aimed to investigate the immunomodulatory activities of the freeze-dried C. papaya leaf juice (FCPLJ) on AG129 mice infected with a clinical DENV-2 (DMOF015) isolate. The infected AG129 mice were orally treated with 500 and 1000 mg/kg/day of FCPLJ, for three days. Platelet, leukocyte, lymphocyte and neutrophil counts were microscopically determined. The level of plasma proinflammatory cytokines was measured by multiplex immunoassay. The levels of intracellular cytokines and viral RNA were determined by RT-qPCR technique. The results showed that the FCPLJ treatment increased the total white blood cell and neutrophil counts in the infected mice. The FCPLJ treatment decreased the level of GM-CSF, GRO-alpha, IL-1 beta, IL-6, MCP-1 and MIP-1 beta in the plasma of the infected mice. The intracellular IL-6 and viral RNA levels in the liver of infected mice were decreased by the FCPLJ treatment. In conclusion, this study supports the potential immunomodulatory role of the FCPLJ in a non-lethal, symptomatic dengue mouse model. Further studies on the action mechanism of the C. papaya leaf juice and its possible use as adjunctive dengue immunotherapy are warranted.
  14. Tan LP, Hamdan RH, Hassan BNH, Reduan MFH, Okene IA, Loong SK, et al.
    Pathogens, 2021 Jun 30;10(7).
    PMID: 34208961 DOI: 10.3390/pathogens10070821
    Rhipicephalus species are distributed globally with a notifiable presence in Southeast Asia (SEA) within animal and human populations. The Rhipicephalus species are highly adaptive and have established successful coexistence within human dwellings and are known to be active all year round, predominantly in tropical and subtropical climates existing in SEA. In this review, the morphological characteristics, epidemiology, and epizootiology of Rhipicephalus tick species found in SEA are reviewed. There are six commonly reported Rhipicephalus ticks in the SEA region. Their interactions with their host species that range from cattle, sheep, and goats, through cats and dogs, to rodents and man are discussed in this article. Rhipicephalus-borne pathogens, including Anaplasma species, Ehrlichia species, Babesia species, and Theileria species, have been highlighted as are relevant to the region in review. Pathogens transmitted from Rhipicepahalus ticks to host animals are usually presented clinically with signs of anemia, jaundice, and other signs of hemolytic changes. Rhipicephalus ticks infestation also account for ectoparasitic nuisance in man and animals. These issues are discussed with specific interest to the SEA countries highlighting peculiarities of the region in the epidemiology of Rhipicephalus species and attendant pathogens therein. This paper also discusses the current general control strategies for ticks in SEA proffering measures required for increased documentation. The potential risks associated with rampant and improper acaricide use are highlighted. Furthermore, such practices lead to acaricide resistance among Rhipicephalus species are highlighted.
  15. Hamel R, Phanitchat T, Wichit S, Morales Vargas RE, Jaroenpool J, Diagne CT, et al.
    Pathogens, 2021 Aug 10;10(8).
    PMID: 34451474 DOI: 10.3390/pathogens10081010
    Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
  16. Osman AY, Elmi SA, Simons D, Elton L, Haider N, Khan MA, et al.
    Pathogens, 2021 Sep 09;10(9).
    PMID: 34578192 DOI: 10.3390/pathogens10091160
    The burden of antimicrobial use in agricultural settings is one of the greatest challenges facing global health and food security in the modern era. Malaysian poultry operations are a relevant but understudied component of epidemiology of antimicrobial resistance. We aimed to identify the prevalence, resistance patterns, and risk factors associated with Salmonella isolates from poultry farms in three states of East Coast Peninsular Malaysia. Between 8 February 2019 and 23 February 2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) was collected from poultry operations. Characteristics of the sampled farms and associated risk factors were obtained using semi-structured questionnaires. Presumptive Salmonella spp. isolates were identified based on colony morphology with subsequent biochemical and PCR confirmation. Susceptibility of isolates was tested against a panel of 12 antimicrobials using disk diffusion method. Our findings revealed that the proportion of Salmonella spp.-positive isolates across sample source were as following: cloacal swab (46.3%, 120/259); faecal (59.5%, 50/84); in tap water (14.3%, 2/14); and in sewage sample (35.7%, 5/14). Isolates from faecal (15.5%, 13/84), cloacal (1.2%, 3/259), and sewage (7.1%, 1/14) samples were significantly resistant to at least five classes of antimicrobials. Resistance to Sulfonamides class (52%, 92/177) was predominantly observed followed by tetracycline (39.5%, 70/177) and aminoglycosides (35.6%, 63/177). Multivariate regression analysis identified intensive management system (OR = 1.55, 95% CI = 1.00-2.40) as a leading driver of antimicrobial resistance (AMR) acquisition. A prevalence of resistance to common antimicrobials was recorded for sulfamethoxazole (33.9%), tetracycline (39.5%), and trimethoprim-sulphamethoxazole (37.9%). A close association between different risk factors and the prevalence of AMR of Salmonella strains suggests a concern over rising misuse of veterinary antimicrobials that may contribute to the emergence and evolution of multidrug-resistant pathogen isolates. One Health approach is recommended to achieve a positive health outcome for all species.
  17. Najib MA, Mustaffa KMF, Ong EBB, Selvam K, Khalid MF, Awang MS, et al.
    Pathogens, 2021 Sep 13;10(9).
    PMID: 34578216 DOI: 10.3390/pathogens10091184
    Typhoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever. A literature search was conducted using three databases (PubMed, ProQuest and Scopus) and manual searches through the references of identified full texts to retrieve relevant literature published between 1 January 2011 and 31 December 2020. Of the 577 studies identified in our search, 12 were included in further analysis. Lipopolysaccharides (LPS) and hemolysin E (HlyE) were the most frequently studied antigens. The specimens examined in these studies included serum and saliva. Using blood culture as the gold standard, anti-LPS IgA gave the highest sensitivity of 96% (95% CI: 93-99) and specificity of 96% (95% CI: 93-99) for distinguishing between typhoid cases and healthy controls, whereas the combination of anti-LPS and anti-flagellin total IgGAM gave the highest sensitivity of 93% (95% CI: 86-99) and specificity of 95% (95% CI: 89-100) for distinguishing typhoid cases and other febrile infections. A comparably high sensitivity of 92% (95% CI: 86-98) and specificity of 89% (95% CI: 78-100) were shown in testing based on detection of the combination of anti-LPS (IgA and IgM) and anti-HlyE IgG as well as a slightly lower sensitivity of 91% (95% CI: 74-100) in the case of anti-50kDa IgA. Anti-50kDa IgM had the lowest sensitivity of 36% (95% CI: 6-65) against both healthy and febrile controls. The development of a rapid diagnostic test targeting antibodies against lipopolysaccharides combined with flagellin appeared to be a suitable approach for the rapid detection test of typhoid fever. Saliva is added benefit for rapid typhoid diagnosis since it is less invasive. As a result, further studies could be done to develop additional approaches for adopting such samples.
  18. Ramli SR, Bunk B, Spröer C, Geffers R, Jarek M, Bhuju S, et al.
    Pathogens, 2021 Sep 15;10(9).
    PMID: 34578230 DOI: 10.3390/pathogens10091198
    The ability of Leptospirae to persist in environments and animal hosts but to cause clinically highly variable disease in humans has made leptospirosis the most common zoonotic disease. Considering the paucity of data on variation in complete genomes of human pathogenic Leptospirae, we have used a combination of Single Molecule Real-Time (SMRT) and Illumina sequencing to obtain complete genome sequences of six human clinical L. interrogans isolates from Malaysia. All six contained the larger (4.28-4.56 Mb) and smaller (0.34-0.395 Mb) chromosome typical of human pathogenic Leptospirae and 0-7 plasmids. Only 24% of the plasmid sequences could be matched to databases. We identified a chromosomal core genome of 3318 coding sequences and strain-specific accessory genomes of 49-179 coding sequences. These sequences enabled detailed genomic strain typing (Genome BLAST Distance Phylogeny, DNA-DNA hybridization, and multi locus sequence typing) and phylogenetic classification (whole-genome SNP genotyping). Even though there was some shared synteny and collinearity across the six genomes, there was evidence of major genome rearrangement, likely driven by horizontal gene transfer and homologous recombination. Mobile genetic elements were identified in all strains in highly varying numbers, including in the rfb locus, which defines serogroups and contributes to immune escape and pathogenesis. On the other hand, there was high conservation of virulence-associated genes including those relating to sialic acid, alginate, and lipid A biosynthesis. These findings suggest (i) that the antigenic variation, adaption to various host environments, and broad spectrum of virulence of L. interrogans are in part due to a high degree of genomic plasticity and (ii) that human pathogenic strains maintain a core set of genes required for virulence.
  19. Balakrishnan SN, Yamang H, Lorenz MC, Chew SY, Than LTL
    Pathogens, 2022 May 25;11(6).
    PMID: 35745472 DOI: 10.3390/pathogens11060618
    Vulvovaginal candidiasis (VVC) is a prevalent gynaecological disease characterised by vaginal wall inflammation that is caused by Candida species. VVC impacts almost three-quarters of all women throughout their reproductive years. As the vaginal mucosa is the first point of contact with microbes, vaginal epithelial cells are the first line of defence against opportunistic Candida infection by providing a physical barrier and mounting immunological responses. The mechanisms of defence against this infection are displayed through the rapid shedding of epithelial cells, the presence of pattern recognition receptors, and the release of inflammatory cytokines. The bacterial microbiota within the mucosal layer presents another form of defence mechanism within the vagina through acidic pH regulation, the release of antifungal peptides and physiological control against dysbiosis. The significant role of the microbiota in maintaining vaginal health promotes its application as one of the potential treatment modalities against VVC with the hope of alleviating the burden of VVC, especially the recurrent disease. This review discusses and summarises current progress in understanding the role of vaginal mucosa and host immunity upon infection, together with the function of vaginal microbiota in VVC.
  20. Loganathan AL, Palaniappan P, Subbiah VK
    Pathogens, 2021 Oct 29;10(11).
    PMID: 34832560 DOI: 10.3390/pathogens10111404
    Fibropapillomatosis (FP) of sea turtles is characterised by cutaneous tumours and is associated with Chelonid herpesvirus 5 (ChHV5), an alphaherpesvirus from the family Herpesviridae. Here, we provide the first evidence of ChHV5-associated FP in endangered Green turtles (Chelonia mydas) from Sabah, which is located at the northern region of Malaysian Borneo. The aims of our study were firstly, to determine the presence of ChHV5 in both tumour exhibiting and tumour-free turtles using molecular techniques and secondly, to determine the phylogeography of ChHV5 in Sabah. We also aim to provide evidence of ChHV5 infection through histopathological examinations. A total of 115 Green turtles were sampled from Mabul Island, Sabah. We observed three Green turtles that exhibited FP tumours and were positive for ChHV5. In addition, six clinically healthy turtles (with no presence of tumours) were also positive for the virus based on Polymerase Chain Reaction of three viral genes (Capsid protein gene UL18, Glycoprotein H gene UL22, and Glycoprotein B gene UL27). The prevalence of the ChHV5 was 5.22% in asymptomatic Green turtles. Epidermal intranuclear inclusions were identified in tumour lesions upon histopathological examination. In addition, phylogenetic analyses of the UL18, UL22, UL27, and UL30 gene sequences showed a worldwide distribution of the ChHV5 strain with no clear distinction based on geographical location suggesting an interoceanic connection and movement of the sea turtles. Thus, the emergence of ChHV5 in Green turtles in the waters of Sabah could indicate a possible threat to sea turtle populations in the future and requires further monitoring of the populations along the Bornean coast.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links