Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Vignesh R, Balakrishnan P, Tan HY, Yong YK, Velu V, Larsson M, et al.
    Pathogens, 2023 Jan 29;12(2).
    PMID: 36839482 DOI: 10.3390/pathogens12020210
    The lethal combination involving TB and HIV, known as "syndemic" diseases, synergistically act upon one another to magnify the disease burden. Individuals on anti-retroviral therapy (ART) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS). The underlying inflammatory complication includes the rapid restoration of immune responses following ART, eventually leading to exaggerated inflammatory responses to MTB antigens. TB-IRIS continues to be a cause of morbidity and mortality among HIV/TB coinfected patients initiating ART, and although a significant quantum of knowledge has been acquired on the pathogenesis of IRIS, the underlying pathomechanisms and identification of a sensitive and specific diagnostic marker still remain a grey area of investigation. Here, we reviewed the latest research developments into IRIS immunopathogenesis, and outlined the modalities to prevent and manage strategies for better clinical and diagnostic outcomes for IRIS.
  2. Piasecki W, Venmathi Maran BA, Ohtsuka S
    Pathogens, 2023 Mar 14;12(3).
    PMID: 36986382 DOI: 10.3390/pathogens12030460
    In view of recent studies, we suggest that the term "preadult" should not be used in scientific reports on Copepoda parasitic on fishes as having no explicit meaning or further justification. Consequently, the term "chalimus" with its use currently restricted in the Caligidae to at most two instars in the life cycles of species of Lepeophtheirus, also becomes redundant. In our new understanding, both the chalimus and preadult stages should be referred to as the respective copepodid stages (II through V, in integrative terminology). The terminology for the caligid copepod life cycle thereby becomes consistent with that for the homologous stages of other podoplean copepods. We see no justification for keeping "chalimus" and "preadult" even as purely practical terms. To justify this reinterpretation, we comprehensively summarize and reinterpret the patterns of instar succession reported in previous studies on the ontogeny of caligid copepods, with special attention to the frontal filament. Key concepts are illustrated in diagrams. We conclude that, using the new integrative terminology, copepods of the family Caligidae have the following stages in their life cycles: nauplius I, nauplius II (both free-living), copepodid I (infective), copepodid II (chalimus 1), copepodid III (chalimus 2), copepodid IV (chalimus 3/preadult 1), copepodid V (chalimus 4/preadult 2), and adult (parasitic). With this admittedly polemical paper, we hope to spark a discussion about this terminological problem.
  3. Tan LP, Hamdan RH, Hassan BNH, Reduan MFH, Okene IA, Loong SK, et al.
    Pathogens, 2021 Jun 30;10(7).
    PMID: 34208961 DOI: 10.3390/pathogens10070821
    Rhipicephalus species are distributed globally with a notifiable presence in Southeast Asia (SEA) within animal and human populations. The Rhipicephalus species are highly adaptive and have established successful coexistence within human dwellings and are known to be active all year round, predominantly in tropical and subtropical climates existing in SEA. In this review, the morphological characteristics, epidemiology, and epizootiology of Rhipicephalus tick species found in SEA are reviewed. There are six commonly reported Rhipicephalus ticks in the SEA region. Their interactions with their host species that range from cattle, sheep, and goats, through cats and dogs, to rodents and man are discussed in this article. Rhipicephalus-borne pathogens, including Anaplasma species, Ehrlichia species, Babesia species, and Theileria species, have been highlighted as are relevant to the region in review. Pathogens transmitted from Rhipicepahalus ticks to host animals are usually presented clinically with signs of anemia, jaundice, and other signs of hemolytic changes. Rhipicephalus ticks infestation also account for ectoparasitic nuisance in man and animals. These issues are discussed with specific interest to the SEA countries highlighting peculiarities of the region in the epidemiology of Rhipicephalus species and attendant pathogens therein. This paper also discusses the current general control strategies for ticks in SEA proffering measures required for increased documentation. The potential risks associated with rampant and improper acaricide use are highlighted. Furthermore, such practices lead to acaricide resistance among Rhipicephalus species are highlighted.
  4. Boonhok R, Sangkanu S, Chuprom J, Srisuphanunt M, Norouzi R, Siyadatpanah A, et al.
    Pathogens, 2021 Jul 04;10(7).
    PMID: 34357992 DOI: 10.3390/pathogens10070842
    Peganum harmala, a well-known medicinal plant, has been used for several therapeutic purposes as it contains numerous pharmacological active compounds. Our study reported an anti-parasitic activity of P. harmala seed extract against Acanthamoeba triangularis. The stress induced by the extract on the surviving trophozoites for Acanthamoeba encystation and vacuolization was examined by microscopy, and transcriptional expression of Acanthamoeba autophagy-related genes was investigated by quantitative PCR. Our results showed that the surviving trophozoites were not transformed into cysts, and the number of trophozoites with enlarged vacuoles were not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of tested AcATG genes, i.e., ATG3, ATG8b, and ATG16, was at a basal level along the treatment. However, upregulation of AcATG16 at 24 h post treatment was observed, which may indicate an autophagic activity of this protein in response to the stress. Altogether, these data revealed the anti-Acanthamoeba activity of P. harmala extract and indicated the association of autophagy mRNA expression and cyst formation under the extract stress, representing a promising plant for future drug development. However, further identification of an active compound and a study of autophagy at the protein level are needed.
  5. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Zasmy Unyah N, Alhassan Abdullahi S, Ahmad Issa Alapid A, et al.
    Pathogens, 2020 Jul 16;9(7).
    PMID: 32708648 DOI: 10.3390/pathogens9070576
    The major route for Toxoplasma gondii (T. gondii) infection is through the ingestion of foods contaminated with oocyst from cat faeces. The microscopic detection of T. gondii oocysts in cat faeces is challenging, which contributes to the failure of detecting or differentiating it from other related coccidian parasites. This study aims to detect T. gondii oocysts in cat faeces using two multicopy-target PCR assays and to evaluate their genetic diversity. Cat faecal (200) samples were collected from pet cats (PCs; 100) and free-roaming cats (FRCs; 100) within Klang Valley, Malaysia, and screened for coccidian oocysts by microscopy using Sheather's sucrose floatation. PCR assays were performed on each faecal sample, targeting a B1 gene and a repetitive element (REP) gene to confirm T. gondii oocysts. Additionally, the PCR amplicons from the REP gene were sequenced to further confirm T. gondii-positive samples for phylogenetic analysis. Microscopy detected 7/200 (3.5%) T. gondii-like oocysts, while both the B1 gene and the REP gene detected 17/200 (8.5%) samples positive for T. gondii. All samples that were microscopically positive for T. gondii-like oocysts were also shown to be positive by both B1 and REP genes. The BLAST results sequenced for 16/200 (8.0%) PCR-positive T. gondii samples revealed homology and genetic heterogeneity with T. gondii strains in the GenBank, except for only one positive sample that did not show a result. There was almost perfect agreement (k = 0.145) between the two PCR assays targeting the B1 gene and the REP gene. This is the first report on microscopic, molecular detection and genetic diversity of T. gondii from cat faecal samples in Malaysia. In addition, the sensitivities of either the B1 gene or REP gene multicopy-target PCR assays are suitable for the accurate detection of T. gondii from cat faeces.
  6. Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H
    Pathogens, 2020 Aug 25;9(9).
    PMID: 32854179 DOI: 10.3390/pathogens9090697
    Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. Additionally, jaundice, increases in hepatic enzymes, and variable leukocyte count changes are seen. Theileria annulata and Theileria parva induce an incomplete transformation of lymphoid and myeloid cell lineages, and these cells possess certain phenotypes of cancer cells. Pathogenic genotypes of Theileria orientalis have been recently associated with severe production losses in Southeast Asia and some parts of Europe. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated. This review, therefore, provides an overview of the clinicopathological and immunopathological profiles of Theileria-infected cattle and focus on DNA vaccines consisting of plasmid DNA with genes of interest, molecular adjuvants, and chitosan as the most promising next-generation vaccine against bovine theileriosis.
  7. Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR
    Pathogens, 2020 May 25;9(5).
    PMID: 32466289 DOI: 10.3390/pathogens9050412
    Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis.

    METHODS: The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells.

    RESULTS: The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells.

    CONCLUSION: This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.

  8. Alkathiry H, Al-Rofaai A, Ya'cob Z, Cutmore TS, Mohd-Azami SNI, Husin NA, et al.
    Pathogens, 2022 Sep 23;11(10).
    PMID: 36297144 DOI: 10.3390/pathogens11101087
    Chigger mites are vectors of the bacterial disease scrub typhus, caused by Orientia spp. The bacterium is vertically transmitted in the vector and horizontally transmitted to terrestrial vertebrates (primarily wild small mammals), with humans as incidental hosts. Previous studies have shown that the size of the chigger populations is correlated with the density of small mammals in scrub typhus-endemic regions. Here, we explore interactions between the small mammals and chiggers in two oil palm plantations located in the Perak and Johor states of Peninsular Malaysia. The location in Perak also contained an aboriginal (Orang Asli) settlement. A ~5% sub-sample from 40,736 chigger specimens was identified from five species of small mammals (n = 217), revealing 14 chigger species, including two new records for Malaysia. The abundance and species richness of chiggers were significantly affected by habitat type (highest in forest border), state (highest in Perak), and season (highest in dry). The overall prevalence of Orientia tsutsugamushi DNA in small-mammal tissues was 11.7% and was not significantly affected by host or habitat characteristics, but in Johor, was positively associated with infestation by Leptotrombidium arenicola. These findings highlight the risk of contracting scrub typhus in oil palm plantations and associated human settlements.
  9. Ramli SR, Bunk B, Spröer C, Geffers R, Jarek M, Bhuju S, et al.
    Pathogens, 2021 Sep 15;10(9).
    PMID: 34578230 DOI: 10.3390/pathogens10091198
    The ability of Leptospirae to persist in environments and animal hosts but to cause clinically highly variable disease in humans has made leptospirosis the most common zoonotic disease. Considering the paucity of data on variation in complete genomes of human pathogenic Leptospirae, we have used a combination of Single Molecule Real-Time (SMRT) and Illumina sequencing to obtain complete genome sequences of six human clinical L. interrogans isolates from Malaysia. All six contained the larger (4.28-4.56 Mb) and smaller (0.34-0.395 Mb) chromosome typical of human pathogenic Leptospirae and 0-7 plasmids. Only 24% of the plasmid sequences could be matched to databases. We identified a chromosomal core genome of 3318 coding sequences and strain-specific accessory genomes of 49-179 coding sequences. These sequences enabled detailed genomic strain typing (Genome BLAST Distance Phylogeny, DNA-DNA hybridization, and multi locus sequence typing) and phylogenetic classification (whole-genome SNP genotyping). Even though there was some shared synteny and collinearity across the six genomes, there was evidence of major genome rearrangement, likely driven by horizontal gene transfer and homologous recombination. Mobile genetic elements were identified in all strains in highly varying numbers, including in the rfb locus, which defines serogroups and contributes to immune escape and pathogenesis. On the other hand, there was high conservation of virulence-associated genes including those relating to sialic acid, alginate, and lipid A biosynthesis. These findings suggest (i) that the antigenic variation, adaption to various host environments, and broad spectrum of virulence of L. interrogans are in part due to a high degree of genomic plasticity and (ii) that human pathogenic strains maintain a core set of genes required for virulence.
  10. Chen A, Sun J, Viljoen A, Mostert D, Xie Y, Mangila L, et al.
    Pathogens, 2023 Jun 09;12(6).
    PMID: 37375510 DOI: 10.3390/pathogens12060820
    Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links