Displaying publications 21 - 40 of 56 in total

Abstract:
Sort:
  1. Devasvaran K, Lim V
    Pharm Biol, 2021 Dec;59(1):494-503.
    PMID: 33905665 DOI: 10.1080/13880209.2021.1910716
    CONTEXT: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the biological industry, pectin has been left behind in synthesising MNPs, for no known reason.

    OBJECTIVE: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs).

    METHODS: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and ResearchGate were systematically searched from the date of their inception until 10th February 2020. Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic reviews.

    RESULTS: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies), non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study).

    CONCLUSIONS: This systematic review demonstrates the current state of the art of Pe-MNPs biological activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understanding of the pharmacological potential of pectin synthesised MNPs.

  2. Latif A, Hussain K, Shehzadi N, Islam M, Khan MT, Anwar R, et al.
    Pharm Biol, 2017 Dec;55(1):547-553.
    PMID: 27951746
    CONTEXT: Kanji, a liquid preparation of roots of Daucus carota L. ssp. sativus (Hoffm.) Arcang. var. vavilovii Mazk. (Apiaceae), may inhibit glutathione sulfotransferase (GST) activity due to ferulic acid content.

    OBJECTIVES: GST inhibition activity and characterization of Kanji and methanol extract of D. carota roots, and oral absorption pattern of ferulic acid from Kanji in rats.

    MATERIALS AND METHODS: GST inhibition activity of Kanji and methanol extract of D. carota roots in concentration range 0.001-100.00 mg/mL was determined using Sprague Dawley rat liver cytosolic fraction. Methanol extract upon column chromatography gave ferulic acid, which was used to characterize Kanji and determine its oral absorption pattern in Wistar rats.

    RESULTS: The GST inhibition activity of Kanji (100.00 μg/mL), methanol extract of D. carota roots (100.00 μg/mL) and tannic acid (10.00 μg/mL, positive control) was found to be 0.162 ± 0.016, 0.106 ± 0.013 and 0.073 ± 0.004 μM/min/mg, respectively. Different Kanji samples and methanol extract contained ferulic acid (0.222-0.316 mg/g) and 0.77 mg/g, respectively. Ferulic acid did not appear in plasma after oral administration of Kanji.

    DISCUSSION: Kanji having solid contents 80.0 μg/mL, equivalent to 0.0025 μg/mL ferulic acid, does not inhibit the activity of GST. The oral administration of Kanji, in human equivalent dose (528 mg/kg, 16.67 μg ferulic acid), to rats indicated poor absorption of ferulic acid.

    CONCLUSION: Kanji having solid contents 14-36 mg/mL does not inhibit GST activity, hence may not interfere with drugs that are the substrates of GST, if taken concomitantly.

  3. Zakaria ZA, Zainol AS, Sahmat A, Salleh NI, Hizami A, Mahmood ND, et al.
    Pharm Biol, 2016 May;54(5):812-26.
    PMID: 26452435 DOI: 10.3109/13880209.2015.1085580
    Muntingia calabura L. (family Muntingiaceae) and Melastoma malabathricum L. (family Melastomaceae) are traditionally used to treat gastric ulcer.
  4. Ali YM, Kadir AA, Ahmad Z, Yaakub H, Zakaria ZA, Abdullah MN
    Pharm Biol, 2012 Jun;50(6):712-9.
    PMID: 22181061 DOI: 10.3109/13880209.2011.621714
    Conjugated linoleic acids (CLAs) are a mixture of positional and geometric isomers of linoleic acid (LA) and believed to have many positive biological activities.
  5. Samsulrizal N, Goh YM, Ahmad H, Md Dom S, Azmi NS, NoorMohamad Zin NS, et al.
    Pharm Biol, 2021 Dec;59(1):66-73.
    PMID: 33399485 DOI: 10.1080/13880209.2020.1865411
    CONTEXT: Diabetes mellitus increases the risk of bone diseases including osteoporosis and osteoarthritis. We have previously demonstrated that Ficus deltoidea Jack (Moraceae) is capable of reducing hyperglycaemia. However, whether F. deltoidea could protect against diabetic osteoporosis remains to be determined.

    OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.

    MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.

    RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.

    CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.

  6. Kwan YP, Saito T, Ibrahim D, Al-Hassan FM, Ein Oon C, Chen Y, et al.
    Pharm Biol, 2015 Jul 8.
    PMID: 26154521
    Euphorbia hirta L. (Euphorbiaceae) has been used as a folk remedy in Southeast Asia for the treatment of various ailments.
  7. Azman NA, Skowyra M, Muhammad K, Gallego MG, Almajano MP
    Pharm Biol, 2017 Dec;55(1):912-919.
    PMID: 28152668 DOI: 10.1080/13880209.2017.1282528
    CONTEXT: Betula pendula Roth (Betulaceae) exhibits many pharmacological activities in humans including anticancer, antibacterial, and antiviral effects. However, the antioxidant activity of BP towards lipid degradation has not been fully determined.

    OBJECTIVE: The BP ethanol and methanol extracts were evaluated to determine antioxidant activity by an in vitro method and lyophilized extract of BP was added to beef patties to study oxidative stability.

    MATERIALS AND METHODS: Antioxidant activities of extracts of BP were determined by measuring scavenging radical activity against methoxy radical generated by Fenton reaction 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (TEAC) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) assays. The lipid deterioration in beef patties containing 0.1% and 0.3% (w/w) of lyophilized extract of BP stored in 80:20 (v/v) O2:CO2 modified atmosphere (MAP) at 4 °C for 10 days was determined using thiobarbituric acid reacting substances (TBARS), % metmyoglobin and colour value.

    RESULTS: The BP methanol extract revealed the presence of catechin, myricetin, quercetin, naringenin, and p-coumaric acid. The BP ethanol (50% w/w) extract showed scavenging activity in TEAC, ORAC and FRAP assays with values of 1.45, 2.81, 1.52 mmol Trolox equivalents (TE)/g DW, respectively. Reductions in lipid oxidation were found in samples treated with lyophilized BP extract (0.1% and 0.3% w/w) as manifested by the changes of colour and metmyoglobin concentration. A preliminary study film with BP showed retard degradation of lipid in muscle food.

    CONCLUSION: The present results indicated that the BP extracts can be used as natural food antioxidants.

  8. Dianita R, Jantan I
    Pharm Biol, 2017 Dec;55(1):1715-1739.
    PMID: 28486830 DOI: 10.1080/13880209.2017.1323225
    CONTEXT: The genus Premna (Lamiaceae), distributed throughout tropical and subtropical Asia, Africa, Australia and the Pacific Islands, is used in folk medicine primarily to treat inflammation, immune-related diseases, stomach disorders, wound healing, and skin diseases.

    OBJECTIVES: This review exhaustively gathers available information on ethnopharmacological uses, phytochemistry, and bioactivity studies on more than 20 species of Premna and critically analyzes the reports to provide the perspectives and directions for future research for the plants as potential source of drug leads and pharmaceutical agents.

    METHODS: A literature search was performed on Premna species based on books of herbal medicine, major scientific databases including Chemical Abstract, Pubmed, SciFinder, Springerlink, Science Direct, Scopus, the Web of Science, Google Scholar, and ethnobotanical databases.

    RESULTS: More than 250 compounds have been isolated and identified from Premna species, comprising of diterpenoids, iridoid glycosides, and flavonoids as the most common secondary metabolites, followed by sesquiterpenes, lignans, phenylethanoids, megastigmanes, glyceroglycolipids, and ceramides. Many in vitro and in vivo studies have been conducted to evaluate the biological and pharmacological properties of the extracts, and isolated compounds of Premna species with antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antihyperglycaemia, and cytotoxic activities.

    CONCLUSION: The bioactive compounds responsible for the bioactivities of most plants have not been well identified as the reported in vivo pharmacological studies were mostly carried out on the crude extracts. The isolated bioactive components should also be further subjected to more preclinical studies and elaborate toxicity study before clinical trials can be pursued.

  9. Ahmad A, Ramasamy K, Majeed AB, Mani V
    Pharm Biol, 2015 May;53(5):758-66.
    PMID: 25756802 DOI: 10.3109/13880209.2014.942791
    Soybean and its fermented products are the most common source of isoflavones in human food.
  10. Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K
    Pharm Biol, 2017 Dec;55(1):825-832.
    PMID: 28118770 DOI: 10.1080/13880209.2017.1280688
    CONTEXT: Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties.

    OBJECTIVE: Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo.

    MATERIALS AND METHODS: Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes.

    RESULTS: VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT.

    DISCUSSION AND CONCLUSION: VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

  11. George A, Udani JK, Yusof A
    Pharm Biol, 2019 Dec;57(1):145-153.
    PMID: 30922154 DOI: 10.1080/13880209.2019.1585460
    CONTEXT: Phyllanthus amarus Schumach. and Thonn. (Euphorbiaceae) is traditionally known to improve general liver health. However, its effect on hangover is unknown.

    OBJECTIVE: This study evaluated PHYLLPRO™, a standardized ethanol extract of P. amarus leaves for protection against oxidative stress and recovery from hangover symptoms.

    MATERIAL AND METHODS: Ten days daily oral supplementation of 750 mg/day followed by intoxication was evaluated in a randomized placebo-controlled (containing only excipient), crossover study in 15 subjects (21-50 years old), for oxidative stress, liver damage, alleviating hangover symptoms (Hangover Severity Score: HSS) and mood improvement (Profile-of-Mood-Scores: POMS).

    RESULTS: PHYLLPRO™ was able to remove blood alcohol in the active group while the placebo group still had 0.05% at 12 h post-intoxication (p  0.05) from baseline to hour 22 was reported in the placebo group using POMS. Significant anti-inflammatory group effect favouring the active group, by the upregulation of cytokines IL-8 (p = 0.0014) and IL-10 (p = 0.0492) and immunomodulatory effects via IL-12p70 (p = 0.0304) were observed. The incidence of adverse events was similar between groups indicating the safety of PHYLLPRO™.

    DISCUSSION AND CONCLUSION: Preliminary findings of PHYLLPRO™ in managing hangover, inflammation and liver functions following intoxication, is demonstrated. Future studies on PHYLLPRO™ in protecting against oxidative stress and hangover in larger populations is warranted.

  12. Saiful Yazan L, Armania N
    Pharm Biol, 2014 Jul;52(7):890-7.
    PMID: 24766363 DOI: 10.3109/13880209.2013.872672
    Dillenia (Dilleniaceae) is a genus of about 100 species of flowering plants in tropical and subtropical trees of Southern Asia, Australasia, and the Indian Ocean Islands. Until now, only eight Dillenia species have been reported to be used traditionally in different countries for various medical purposes. Out of eight species, D. pentagyna (Roxb), D. indica (Linn.) and D. suffruticosa (Griffith Ex. Hook. F. & Thomsom Martelli) have been reported to be used to treat cancerous growth.
  13. Baharuddin AA, Roosli RAJ, Zakaria ZA, Md Tohid SF
    Pharm Biol, 2018 Dec;56(1):422-432.
    PMID: 30301390 DOI: 10.1080/13880209.2018.1495748
    CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated.

    OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways.

    MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit.

    RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation.

    CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.

  14. Tan DC, Idris KI, Kassim NK, Lim PC, Safinar Ismail I, Hamid M, et al.
    Pharm Biol, 2019 Dec;57(1):345-354.
    PMID: 31185767 DOI: 10.1080/13880209.2019.1610462
    Context:Paederia foetida L. (Rubiaceae) is an edible plant distributed in Asian countries including Malaysia. Fresh leaves have been traditionally used as a remedy for indigestion and diarrhea. Several phytochemical studies of the leaves have been documented, but there are few reports on twigs. Objective: This study investigates the enzyme inhibition of P. foetida twig extracts and compound isolated from them. In addition, in silico molecular docking of scopoletin was investigated. Materials and methods: Plants were obtained from two locations in Malaysia, Johor (PFJ) and Pahang (PFP). Hexane, chloroform and methanol extracts along with isolated compound (scopoletin) were evaluated for their enzyme inhibition activities (10,000-0.000016 µg/mL). The separation and identification of bio-active compounds were carried out using column chromatography and spectroscopic techniques, respectively. In silico molecular docking of scopoletin with receptors (α-amylase and α-glucosidase) was carried out using AutoDock 4.2. Results: The IC50 values of α-amylase and α-glucosidase inhibition activity of PFJ chloroform extract were 9.60 and 245.6 µg/mL, respectively. PFP chloroform extract exhibited α-amylase and α-glucosidase inhibition activity (IC50 = 14.83 and 257.2 µg/mL, respectively). The α-amylase and α-glucosidase inhibitory activity of scopoletin from both locations had IC50 values of 0.052 and 0.057 µM, respectively. Discussion and conclusions: Separation of PFJ chloroform extract afforded scopoletin (1), stigmasterol (2) and γ-sitosterol (3) and the PFP chloroform extract yielded (1), (2), (3) and ergost-5-en-3-ol (4). Scopoletin was isolated from this species for the first time. In silico calculations gave a binding energy between scopoletin and α-amylase of -6.03 kcal/mol.
  15. Singh JC, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SS, Diwan PV
    Pharm Biol, 2015 May;53(5):630-6.
    PMID: 25472801 DOI: 10.3109/13880209.2014.935866
    Vanillic acid (VA), a flavoring agent used in food and drug products, obtained naturally from the plant Angelica sinensis (Oliv.) Diels (Apiaceae), used in the traditional Chinese medicine. It is reported to possess strong antioxidant, anti-inflammatory, and neuroprotective effects. However, the pharmacological effects on oxidative stress-induced neurodegeneration are not well investigated.
  16. Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR
    Pharm Biol, 2017 Dec;55(1):1093-1113.
    PMID: 28198202 DOI: 10.1080/13880209.2017.1288749
    CONTEXT: Medicinal plants have attracted global attention for their hidden therapeutic potential. Clinacanthus nutans (Burm.f) Lindau (Acanthaceae) (CN) is endemic in Southeast Asia. CN contains phytochemicals common to medicinal plants, such as flavonoids. Traditionally, CN has been used for a broad range of human ailments including snake bites and cancer.

    OBJECTIVES: This article compiles the ethnomedicinal uses of CN and its phytochemistry, and thus provides a phytochemical library of CN. It also discusses the known pharmacological and biological effects of CN to enable better investigation of CN.

    METHODS: This literature review was limited to articles and websites published in the English language. MEDLINE and Google Scholar databases were searched from December 2014 to September 2016 using the following keywords: "Clinacanthus nutans" and "Belalai gajah". The results were reviewed to identify relevant articles. Information from relevant selected studies was systematically analyzed from contemporary ethnopharmacological sources, evaluated against scientific literature, and extracted into tables.

    RESULTS: The literature search yielded 124 articles which were then further scrutinized revealing the promising biological activities of CN, including antimicrobial, antiproliferative, antitumorigenic and anti-inflammatory effects. Few articles discussed the mechanisms for these pharmacological activities. Furthermore, CN was beneficial in small-scale clinical trials for genital Herpes and aphthous stomatitis.

    CONCLUSION: Despite the rich ethnomedicinal knowledge behind the traditional uses of CN, the current scientific evidence to support these claims remains scant. More research is still needed to validate these medicinal claims, beginning by increasing the understanding of the biological actions of this plant.

  17. Azemi AK, Mokhtar SS, Sharif SET, Rasool AHG
    Pharm Biol, 2021 Dec;59(1):1432-1440.
    PMID: 34693870 DOI: 10.1080/13880209.2021.1990357
    CONTEXT: Atherosclerosis predisposes individuals to adverse cardiovascular events. Clinacanthus nutans L. (Acanthaceae) is a traditional remedy used for diabetes and inflammatory conditions.

    OBJECTIVES: To investigate the anti-atherosclerotic activity of a C. nutans leaf methanol extract (CNME) in a type 2 diabetic (T2D) rat model induced by a high-fat diet (HFD) and low-dose streptozotocin.

    MATERIALS AND METHODS: Sixty male Sprague-Dawley rats were divided into five groups: non-diabetic fed a standard diet (C), C + CNME (500 mg/kg, orally), diabetic fed an HFD (DM), DM + CNME (500 mg/kg), and DM + Metformin (DM + Met; 300 mg/kg). Treatment with oral CNME and metformin was administered for 4 weeks. Fasting blood glucose (FBG), serum lipid profile, atherogenic index (AI), aortic tissue superoxide dismutase levels (SOD), malondialdehyde (MDA), and tumour necrosis factor-alpha (TNF-α) were measured. The rats' aortas were stained for histological analysis and intima-media thickness (IMT), a marker of subclinical atherosclerosis.

    RESULTS: The CNME-treated diabetic rats had reduced serum total cholesterol (43.74%; p = 0.0031), triglycerides (80.91%; p = 0.0003), low-density lipoprotein cholesterol (56.64%; p = 0.0008), AI (51.32%; p 

  18. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

  19. Salleh WM, Ahmad F, Yen KH, Zulkifli RM
    Pharm Biol, 2016;54(2):322-30.
    PMID: 25880146 DOI: 10.3109/13880209.2015.1037003
    The ethnopharmacological study of Beilschmiedia indicates that several species are used for the treatment of various ailments.
  20. Hasan MM, Madhavan P, Ahmad Noruddin NA, Lau WK, Ahmed QU, Arya A, et al.
    Pharm Biol, 2023 Dec;61(1):1135-1151.
    PMID: 37497554 DOI: 10.1080/13880209.2023.2230251
    CONTEXT: Arjunolic acid (AA) is a triterpenoid saponin found in Terminalia arjuna (Roxb.) Wight & Arn. (Combretaceae). It exerts cardiovascular protective effects as a phytomedicine. However, it is unclear how AA exerts the effects at the molecular level.

    OBJECTIVE: This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression.

    MATERIALS AND METHODS: The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis.

    RESULTS: After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment.

    DISCUSSION AND CONCLUSIONS: TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links