Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Bukhari SNA, Alsahli TG, Ejaz H, Ahmed N, Ahmad W, Elsherif MA, et al.
    RSC Adv, 2023 Sep 18;13(40):28139-28147.
    PMID: 37753394 DOI: 10.1039/d3ra04997c
    Applying a multistep approach, novel indolin-2-ones (IND) that possess an arylidene motif have been synthesized. Eight compounds were chosen for different biological tests (antimicrobial and cytotoxicity). IND containing 2-thienyl (4h) fragment have been found to exhibit good antimicrobial activity against B. cereus. Molecules that have 3-aminophenyl (4d) or 2-pyridyl (4g) groups have shown the best antifungal activities against all tested fungi. These compounds have also been noticed as promising pharmaceuticals against MCF-7 cancer cell lines. Experimental outcomes from the investigation of the interaction of 4d with DNA implied its moderate binding to DNA (KSV = 1.35 × 104 and 3.05 × 104 M-1 for EB and Hoechst binder, respectively). However, considerably stronger binding of 4d to BSA has been evidenced (Ka = 6.1 × 106 M-1). In summary, IND that contains m-aminobenzylidene fragment (4d) exhibits a good dual biological activity making it a promising candidate for further investigation in the drug discovery sector.
  2. Uddin MM, Kabir MH, Ali MA, Hossain MM, Khandaker MU, Mandal S, et al.
    RSC Adv, 2023 Nov 07;13(47):33336-33375.
    PMID: 37964903 DOI: 10.1039/d3ra04456d
    Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.
  3. Rahman MB, Noor-E-Ashrafi, Miah MH, Khandaker MU, Islam MA
    RSC Adv, 2023 Jun 05;13(25):17130-17142.
    PMID: 37293469 DOI: 10.1039/d3ra02170j
    The first and foremost intent of our present study is to design a perovskite solar cell favorable for realistic applications with excellent efficiency by utilizing SCAPS-1D. To ensure this motive, the detection of a compatible electron transport layer (ETL) and hole transport layer (HTL) for the suggested mixed perovskite layer entitled FA0.85Cs0.15Pb (I0.85Br0.15)3 (MPL) was carried out, employing diver ETLs such as SnO2, PCBM, TiO2, ZnO, CdS, WO3 and WS2, and HTLs such as Spiro-OMeTAD, P3HT, CuO, Cu2O, CuI, and MoO3. The attained simulated results, especially for FTO/SnO2/FA0.85Cs0.15Pb (I0.85Br0.15)3/Spiro-OMeTAD/Au, have been authenticated by the theoretical and experimental data, which endorse our simulation process. From the detailed numerical analysis, WS2 and MoO3 were chosen as ETL and HTL, respectively, for designing the proposed novel structure of FA0.85Cs0.15Pb (I0.85Br0.15)3-based perovskite solar cells. With the inspection of several parameters such as variation of the thickness of FA0.85Cs0.15Pb (I0.85Br0.15)3, WS2, and MoO3 including different defect densities, the novel proposed structure has been optimized, and a noteworthy efficiency of 23.39% was achieved with the photovoltaic parameters of VOC = 1.07 V, JSC = 21.83 mA cm-2, and FF = 73.41%. The dark J-V analysis unraveled the reasons for the excellent photovoltaic parameters of our optimized structure. Furthermore, the scrutinizing of QE, C-V, Mott-Schottky plot, and the impact of the hysteresis of the optimized structure was executed for further investigation. Our overall investigation disclosed the fact that the proposed novel structure (FTO/WS2/FA0.85Cs0.15Pb (I0.85Br0.15)3/MoO3/Au) can be attested as a supreme structure for perovskite solar cells with greater efficiency as well as admissible for practical purposes.
  4. Kamaruddin NAL, Taha MF, Romil AM, Mohd Rasdi FL
    RSC Adv, 2023 Apr 11;13(17):11249-11260.
    PMID: 37057267 DOI: 10.1039/d3ra00806a
    Novel solid-supported ionic liquid (Si-Sal-SSIL) was synthesized by immobilization of 1-methyl-3-(3-trimethoxysilylpropylimidazolium) salicylate [MTMSPI][Sal] ionic liquid onto the activated silica gel. First, the [MTMSPI][Sal] ionic liquid was derived from the reaction of a metathesis product of 1-methyl-3-(3-trimethoxysilylpropylimidazolium) chloride [MTMSPI][Cl] with sodium salicylate through an ion-exchanged reaction. [MTMSPI][Sal] was purified and characterized through ion-chromatography, CHN and Karl-Fischer titration analyses. Further characterizations on [MTMSPI][Sal] were carried out by 1H NMR and FTIR analyses. Si-Sal-SSIL was successfully prepared and confirmed through BET and solid-state NMR analyses. Si-Sal-SSIL showed better removal capacities towards Pb(ii) and Ni(ii) ions in comparison to native activated silica gel. Si-Sal-SSIL was then applied as solid adsorbent for an efficient removal of Pb(ii) and Ni(ii) from the aqueous solution. A series of batch sorption study were performed to explore the influence of parameters i.e., loading ratio of activated silica gel to [MTMSPI][Sal], pH, mixing time, initial concentration of analyte towards the adsorption of Pb(ii) and Ni(ii) ions onto Si-Sal-SSIL as a function of removal efficiency. Under optimized conditions, the sorption kinetics for removal of both metals agreed with pseudo-second order linear plots. The mechanism of Pb(ii) and Ni(ii) sorption by Si-Sal-SSIL gave good fits for Langmuir model.
  5. Jun KC, Abdul Raman AA, Buthiyappan A
    RSC Adv, 2020 Jun 19;10(40):24079-24094.
    PMID: 35517322 DOI: 10.1039/d0ra03307c
    This study investigated the potential of palm kernel shell (PKS) as a biomass feed for adsorbent production. This work aims at synthesizing green adsorbent from activated PKS by integrating iron oxide and zeolite. The newly developed adsorbents, zeolite-Fe/AC and Fe/AC, were analyzed for surface area, chemical composition, magnetic properties, crystallinity, and stability. The adsorbent efficiency in removing effluent from the palm oil mill was evaluated. The influence of operating parameters, including adsorbent dosage, H2O2, reaction time, and initial solution pH for adsorption performance was studied. The Fourier transform infrared analysis revealed that the adsorbents contain functional groups including OH, N-H, C[double bond, length as m-dash]O and C[double bond, length as m-dash]C, which are essential for removing pollutants. The SEM-EDX analysis shows holes in the adsorbent surface and that it is smooth. The adsorption study revealed that under optimized conditions, by using 4 g L-1 of adsorbent and 67.7 mM H2O2, zeolite-Fe/AC was able to remove 83.1% colour and 67.2% COD within 30 min. However, Fe/AC requires 5 g L-1 of adsorbent and 87.7 mM to remove 86.8 percent and 65.6 percent, respectively. This study also showed that zeolite-Fe/AC has higher reusability compared to Fe/AC. Among Freundlich and Temkin models, the experimental data were found to be best fitted with the Langmuir isotherm model. The kinetic analysis revealed that for both adsorbents, the adsorption process fitted the pseudo-second-order model (R 2 = 0.9724). The finding reflects monolayer adsorption of zeolite-Fe/AC and Fe/AC. This study thus demonstrates the applicability of low-cost green adsorbents produced from PKS to treat oil refinery effluent and other recalcitrant wastewaters.
  6. Osman MJ, Abdul Rashid JI, Khim OK, Zin Wan Yunus WM, Mohd Noor SA, Mohd Kasim NA, et al.
    RSC Adv, 2021 Jul 27;11(42):25933-25942.
    PMID: 35479481 DOI: 10.1039/d1ra04318h
    Acephate (Ac) is an organophosphate (OP) compound, which is able to inhibit the activity of acetylcholinesterase. Thus, the aim of this study was to optimize the detection of Ac using a thiolated acephate binding aptamer-citrate capped gold nanoparticle (TABA-Cit-AuNP) sensor that also incorporated an image processing technique. The effects of independent variables, such as the incubation period of TABA-Cit-AuNPs (3-24 h) for binding TABA to Cit-AuNPs, the concentration of phosphate buffer saline (PBS) (0.001-0.01 M), the concentration of thiolated acephate binding aptamer (TABA) (50-200 nM), and the concentration of magnesium sulphate (MgSO4) (1-300 mM) were investigated. A quadratic model was developed using a central composite design (CCD) from response surface methodology (RSM) to predict the sensing response to Ac. The optimum conditions such as the concentration of PBS (0.01 M), the concentration of TABA (200 nM), the incubation period of TABA-Cit-AuNPs (3 h), and the concentration of MgSO4 (1 mM) were used to produce a TABA-Cit-AuNPs sensor for the detection of Ac. Under optimal conditions, this sensor showed a detection ranging from 0.01 to 2.73 μM and a limit of detection (LOD) of 0.06 μM. Real sample analysis demonstrated this aptasensor as a good analytical method to detect Ac.
  7. Mohd Mokhtar NAI, Ashari SE, Mohd Zawawi R
    RSC Adv, 2023 May 02;13(20):13493-13504.
    PMID: 37152575 DOI: 10.1039/d3ra01060k
    Lipase has been gaining attention as the recognition element in electrochemical biosensors. Lipase immobilization is important to maintain its stability while providing excellent conductivity. In this study, a lipase electrochemical biosensor immobilized on a copper-centred metal-organic framework integrated with reduced graphene oxide (lipase/rGO/Cu-MOF) was synthesized by a facile method at room temperature. Response surface methodology (RSM) via central composite design (CCD) was used to optimize the synthesis parameters, which are rGO weight, ultrasonication time, and lipase concentration, to maximize the current response for the detection of p-nitrophenyl acetate (p-NPA). The results of the analysis of variance (ANOVA) showed that all three parameters were significant, while the interaction between the ultrasonication time and lipase concentration was the only significant interaction with a p-value of less than 0.05. The optimized electrode with parameters of 1 mg of rGO, 30 min ultrasonication time, and 30 mg mL-1 lipase exhibited the highest current response of 116.93 μA using cyclic voltammetry (CV) and had a residual standard error (RSE) of less than 2% in validation, indicating that the model is suitable to be used. It was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR), where the integration of the composite was observed. Immobilization using ultrasonication altered the lipase's secondary structure, but reduced its unorderly coils. The electrochemical and thermal analysis showed that the combination of Cu-MOF with rGO enhanced the electrochemical conductivity and thermostability.
  8. Ong CL, Lai YC, Heidelberg T, Tang WK, Lee VS, Khaligh NG, et al.
    RSC Adv, 2023 Oct 18;13(44):30733-30742.
    PMID: 37869389 DOI: 10.1039/d3ra05692a
    The conventional medium chain chlorinated paraffin (MCCP) and zinc dialkyl dithiophosphate (ZDDP) additives have greatly enhanced the extreme pressure (EP) and anti-wear (AW) performance of the metalworking fluids. However, chlorine- and zinc-containing additives are restricted in use due to eco-toxicity issue. Herein, ashless and non-corrosive dimercaptobenzothiadiazole derivatives, namely bis-2,5-benzylsulfanyl-[1,3,4]thiadiazole (BBST) and bis-2,5-octylsulfanyl-[1,3,4]thiadiazole (BOST) consist of three sulfur atoms have been synthesized and evaluated. The performance of BBST shows a weld load (PD) of 3089 N and AW value of 5 mm2, which represents an improvement of 3.1 and 7.4 folds over naphthenic base oil (NBO). In addition, BBST also outperformed BOST, MCCP, and ZDDP in terms of its weld load and AW properties. Based on XPS analysis and molecular electrostatic potential maps (MEPS), BBST exhibits superior tribology performance due to the interaction between the sulfur (S), nitrogen (N), and π-electrons of the benzene ring with the metal surface. The formation of FeS, Fe2O3 and Fe⋯N coordinate bonds contributes to the creation of an excellent tribofilm.
  9. Chiu HI, Samad NA, Fang L, Lim V
    RSC Adv, 2021 Mar 01;11(16):9433-9449.
    PMID: 35423427 DOI: 10.1039/d1ra00074h
    Recent advances in nanotechnology have contributed tremendously to the development and revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect, Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand, active compounds and cell line used. The half maximal inhibitory concentration (IC50) for cytotoxicity was the main measurement in this data extraction, and the SI units were standardized to μg mL-1 for a better view of comparison. This systematic review also identified that cytotoxicity potency was inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less than 300 nm and absolute zeta potential ∼20 mV. In conclusion, more comprehensive and critical appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.
  10. Samsudin NA, Zainal Z, Lim HN, Sulaiman Y, Chang SK, Lim YC, et al.
    RSC Adv, 2018 Jun 21;8(41):23040-23047.
    PMID: 35540159 DOI: 10.1039/c8ra03513j
    In this study, a composite material, manganese oxide/reduced titania nanotubes (Mn2O3/R-TNTs), was synthesized through incorporation of Mn2O3 onto R-TNTs via the reverse pulse electrodeposition technique. The influence of pulse reverse duty cycles on the morphological, structural and electrochemical performance of the surface was studied by varying the applied duty cycle from 10% to 90% for 5 min total on-time at an alternate potential of -0.90 V (E on) and 0.00 V (E off). FESEM analysis revealed the uniform deposition of Mn2O3 on the circumference of the nanotubes. The amount of Mn2O3 loaded onto the R-TNTs increased as a higher duty cycle was applied. Cyclic voltammetry and galvanostatic charge-discharge tests were employed to elucidate the electrochemical properties of all the synthesized samples in 1 M KCl. The specific capacitance per unit area was greatly enhanced upon the incorporation of Mn2O3 onto R-TNTs, but showed a decrease as a high duty cycle was applied. This proved that low amounts of Mn2O3 loading enhanced the facilitation of the active ions for charge storage purposes. The optimized sample, Mn2O3/R-TNTs synthesized at 10% duty cycle, exhibited high specific capacitance of 18.32 mF cm-2 at a current density of 0.1 mA cm-2 obtained from constant current charge-discharge measurements. This revealed that the specific capacitance possessed by Mn2O3/R-TNTs synthesized at 10% duty cycle was 6 times higher than bare R-TNTs.
  11. Mubassir MHM, Naser MA, Abdul-Wahab MF, Jawad T, Alvy RI, Hamdan S
    RSC Adv, 2020 Apr 21;10(27):15800-15814.
    PMID: 35493652 DOI: 10.1039/d0ra01396j
    The first layer of defense that plants deploy to ward off a microbial invasion comes in the form of pattern-triggered immunity (PTI), which is initiated when the pattern-recognition receptors (PRRs) bind with the pathogen-associated molecular patterns (PAMPs) and co-receptor proteins, and transmit a defense signal. Although several plant PRRs have been discovered, very few of them have been fully characterized, and their functional parameters assessed. In this study, the 3D-model prediction of an entire plant PRR protein, Xa21, was done by implementing multiple in silico modeling techniques. Subsequently, the PAMP RaxX21-sY (sulphated RaxX21) and leucine-rich repeat (LRR) domain of the co-receptor OsSERK2 were docked with the LRR domain of Xa21. The docked complex of these three proteins formed a heterodimer that closely resembles the other crystallographic PTI complexes available. Molecular dynamics simulations and MM/PBSA calculations were applied for an in-depth analysis of the interactions between Xa21 LRR, RaxX21-sY, and OsSERK2 LRR. Arg230 and Arg185 from Xa21 LRR, Val2 and Lys15 from RaxX21-sY and Lys164 from OsSERK2 LRR were found to be the prominent residues which might contribute significantly in the formation of a heterodimer during the PTI process mediated by Xa21. Additionally, RaxX21-sY interacted much more favorably with Xa21 LRR in the presence of OsSERK2 LRR in the complex, which substantiates the necessity of the co-receptor in Xa21 mediated PTI to recognize the PAMP RaxX21-sY. However, the free energy binding calculation reveals the favorability of a heterodimer formation of PRR Xa21 and co-receptor OsSERK2 without the presence of PAMP RaxX21-sY, which validate the previous lab result.
  12. Jamain Z, Khairuddean M, Guan-Seng T
    RSC Adv, 2020 Aug 03;10(48):28918-28934.
    PMID: 35520049 DOI: 10.1039/d0ra03812a
    Nucleophilic substitution reaction between 4-hydroxybenzaldehyde and hexachlorocyclotriphosphazene, HCCP formed hexakis(4-formlyphenoxy)cyclotriphosphazene, 1. Intermediates 2a-e was formed from the alkylation reaction of methyl 4-hydroxybenzoate with alkyl bromide which further reduced to form benzoic acid intermediates. Further reaction of 2a-e and other substituted benzoic acid formed 3a-h, which then reduced to give subsequent amines, 4a-h. Other similar reaction was used to synthesis 4i. Condensation reaction between 1 and 4a-i yielded hexasubstituted cyclotriphosphazene compounds, 5a-i having Schiff base and amide linking units, and these compounds consist of different terminal substituents such as heptyl, nonyl, decyl, dodecyl, tetradecyl, hydroxy, carboxy, chloro, and nitro groups, respectively. Compound 5j with amino substituent at terminal end was formed from the reduction of 5i. All the intermediates and compounds were characterized using Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and CHN elemental analysis. Mesophase texture of these compounds were determined using Polarized Optical Microscope (POM) and their mesophase transition were further confirmed using Differential Scanning Calorimetry (DSC). Only compounds 5a-e with alkoxy chains exhibited smectic A phase while other intermediates (1, 2a-e, 3a-h, and 4a-i) and final compounds (5f-j) are found to be non-mesogenic with no liquid crystal behaviour. The confirmation of the identity of the SmA phase was determined using XRD analysis. The study on the structure-properties relationship was conducted in order to determine the effect of the terminal group, length of the chains and linking units to the mesophase behaviour of the compounds. Moreover, the fire retardant properties of these compounds were determined using Limiting Oxygen Index (LOI) testing. Polyester resin with LOI value of 22.53% was used as matrix for moulding in the study. The LOI value increased to 24.71% when this polyester resin incorporated with 1 wt% of HCCP. Generally, all the final compounds showed a positive results with LOI value above 27% and the highest LOI value was belonged to compound 5i with 28.53%. The high thermal stability of the Schiff base molecules and the electron withdrawing group of the amide bonds and nitro group enhanced the fire retardant properties of this compound.
  13. Padil, Putra MD, Hidayat M, Kasiamdari RS, Mutamima A, Iwamoto K, et al.
    RSC Adv, 2023 Jul 12;13(31):21403-21413.
    PMID: 37465575 DOI: 10.1039/d3ra01556d
    Tetraselmis chuii is a potential microalgae that is in consideration for producing bioethanol owing to its large content of carbohydrates. The glucose production from T. chuii through an enzymatic process with cellulase and xylanase (pretreatment process) and α-amylase and glucoamylase (saccharification process) was studied. The mechanism of the enzymatic process was developed and the kinetic models were then evaluated. For the pretreatment process, enzymes with 30% concentration reacted at 30 °C for 40 min resulted in 35.9% glucose yield. For the saccharification process, the highest glucose yield of 90.03% was obtained using simultaneous α-amylase (0.0006%) and glucoamylase (0.01%) enzymes at 55 °C and for 40 min. The kinetic models fitted well with the experimental data. The model also revealed that the saccharification process performed better than the pretreatment process with a higher kinetic constant and lower activation energy. The proposed kinetic model plays an important role in implementing processes at a larger scale.
  14. Abdul Rashid JI, Yusof NA, Abdullah J, Shomiad Shueb RH
    RSC Adv, 2023 Jun 15;13(27):18748-18759.
    PMID: 37362605 DOI: 10.1039/d3ra00216k
    In recent years, limited research has been conducted on enhancing DNA hybridization-based biosensor approaches using statistical models. This study explores the application of response surface methodology (RSM) to improve the performance of a DNA hybridization biosensor for dengue virus (DENV) detection. The biosensor is based on silicon nanowires decorated with gold nanoparticles (SiNWs/AuNPs) and utilizes methylene blue as a redox indicator. The DNA hybridization process between the immobilized DNA probe and the target DENV gene was monitored using differential pulse voltammetry (DPV) based on the reduction of methylene blue. Fourier-transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) were employed to confirm successful DNA hybridization events on the modified screen-printed gold electrode (SPGE) surface. Several parameters, including pH buffer, NaCl concentration, temperature, and hybridization time, were simultaneously optimized, with NaCl concentration having the most significant impact on DNA hybridization events. This study enhances the understanding of the role of each parameter in influencing DNA hybridization detection in electrochemical biosensors. The optimized biosensor demonstrated the ability to detect complementary oligonucleotide and amplified DENV gene concentrations as low as 0.0891 ng µL-1 (10 pM) and 2.8 ng µL-1, respectively. The developed biosensor shows promise for rapid clinical diagnosis of dengue virus infection.
  15. Sarkar DK, Selvanathan V, Mottakin M, Hasan AKM, Islam MA, Almohamadi H, et al.
    RSC Adv, 2023 Jun 22;13(28):19130-19139.
    PMID: 37362330 DOI: 10.1039/d3ra02512h
    This study represents a green synthesis method for fabricating an oxygen evolution reaction (OER) electrode by depositing two-dimensional CuFeOx on nickel foam (NF). Two-dimensional CuFeOx was deposited on NF using in situ hydrothermal synthesis in the presence of Aloe vera extract. This phytochemical-assisted synthesis of CuFeOx resulted in a unique nano-rose-like morphology (petal diameter 30-70 nm), which significantly improved the electrochemical surface area of the electrode. The synthesized electrode was analyzed for its OER electrocatalytic activity and it was observed that using 75% Aloe vera extract in the phytochemical-assisted synthesis of CuFeOx resulted in improved OER electrocatalytic performance by attaining an overpotential of 310 mV for 50 mA cm-2 and 410 mV for 100 mA cm-2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, demonstrating its potential as an efficient OER electrode material. This study highlights the promising use of Aloe vera extract as a green and cost-effective way to synthesize efficient OER electrode materials.
  16. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Muhammad S, Raza H, et al.
    RSC Adv, 2023 May 02;13(20):13798-13808.
    PMID: 37197574 DOI: 10.1039/d3ra01348k
    Considering the varied pharmacological prominence of thiazole and oxadiazole heterocyclic moieties, a unique series of bi-heterocyclic hybrids, 8a-h, was synthesized in a convergent manner. The structures of newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, and IR spectral studies. The structure-activity relationship of these compounds was predicted by examining their inhibitory effects against alkaline phosphatase, whereby all these molecules exhibited superb inhibitory potentials relative to the standard used. The kinetics mechanism was determined by Lineweaver-Burk plots which revealed that 8g inhibited the studied enzyme non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.42 μM. The allosteric computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal mol-1). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules have potential to be nontoxic medicinal scaffolds for the treatment of alkaline phosphate-associated ailments.
  17. Hussein OA, Habib K, Saidur R, Muhsan AS, Shahabuddin S, Alawi OA
    RSC Adv, 2019 Nov 25;9(66):38576-38589.
    PMID: 35540235 DOI: 10.1039/c9ra07811h
    Covalent functionalization (CF-GNPs) and non-covalent functionalization (NCF-GNPs) approaches were applied to prepare graphene nanoplatelets (GNPs). The impact of using four surfactants (SDS, CTAB, Tween-80, and Triton X-100) was studied with four test times (15, 30, 60, and 90 min) and four weight concentrations. The stable thermal conductivity and viscosity were measured as a function of temperature. Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and Raman spectroscopy verified the fundamental efficient and stable CF. Several techniques, such as dispersion of particle size, FESEM, FETEM, EDX, zeta potential, and UV-vis spectrophotometry, were employed to characterize both the dispersion stability and morphology of functionalized materials. At ultrasonic test time, the highest stability of nanofluids was achieved at 60 min. As a result, the thermal conductivity displayed by CF-GNPs was higher than NCF-GNPs and distilled water. In conclusion, the improvement in thermal conductivity and stability displayed by CF-GNPs was higher than those of NCF-GNPs, while the lowest viscosity was 8% higher than distilled water, and the best thermal conductivity improvement was recorded at 29.2%.
  18. Hossain MA, Mohamed Iqbal MA, Julkapli NM, San Kong P, Ching JJ, Lee HV
    RSC Adv, 2018 Jan 29;8(10):5559-5577.
    PMID: 35542409 DOI: 10.1039/c7ra11824d
    Biomass-derived oils are recognised as the most promising renewable resources for the production of ester-based biolubricants due to their biodegradable, non-toxic and metal adhering properties. Homogeneous acid catalysts have been conventionally used in catalytic esterification and transesterification for the synthesis of ester-based biolubricants. Although homogeneous acid catalysts encounter difficulty during phase separation, they exhibit superior selectivity and good stereochemistry and regiochemistry control in the reaction. Consequently, transition metal complex catalysts (also known as homogeneous organometallic catalysts) are proposed for biolubricant synthesis in order to achieve a higher selectivity and conversion. Herein, the potential of both homogeneous transition metal complexes and heterogeneous supported metal complexes towards the synthesis of biolubricants, particularly, in esterification and transesterification, as well as the upgrading process, including hydrogenation and in situ hydrogenation-esterification, is critically reviewed.
  19. Sukumaran SD, Faraj FL, Lee VS, Othman R, Buckle MJC
    RSC Adv, 2018 Feb 14;8(14):7818-7831.
    PMID: 35539141 DOI: 10.1039/c7ra11872d
    A series of 2-aryl-3-(arylideneamino)-1,2-dihydroquinazoline-4(3H)-ones were evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation. All the compounds were found to inhibit both forms of cholinesterase (IC50 in the range 4-32 μM) with some selectivity for BuChE. Most of the compounds also showed self-induced Aβ aggregation inhibitory activities, which were comparable or higher than those obtained for reference compounds, curcumin and myricetin. Docking and molecular dynamics (MD) simulation experiments suggested that the compounds are able to disrupt the dimer form of Aβ.
  20. Mohd-Zahid MH, Zulkifli SN, Che Abdullah CA, Lim J, Fakurazi S, Wong KK, et al.
    RSC Adv, 2021 Apr 26;11(26):16131-16141.
    PMID: 35481195 DOI: 10.1039/d1ra01093j
    The enhanced permeability and retention effect allows for passive targeting of solid tumours by nanoparticles carrying anticancer drugs. However, active targeting by incorporation of various ligands onto nanoparticles can provide for a more selective and enhanced chemotherapeutic effect and complement the deficiencies of the passive targeting approach. Here we report on the design of the carboxyl-terminated PEGylated gold nanoparticles (AuNPs), their functionalization with anti-CD133 monoclonal antibody (mAb) via a crosslinking reaction, and subsequent 5-fluorouracil (5-FU) drug loading. The synthesized products in the form of stable colloids were characterised using a range of physicochemical techniques, including X-ray diffraction (XRD), UV-Vis spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Conjugation of anti-CD133 mAb onto PEGylated AuNPs was confirmed with the use of UV-Vis, BCA protein assay and fluorescence microscopy. HCT116 colorectal cancer cells abundantly expressed CD133: 92.4 ± 1.3%, as measured by flow cytometry. Whereas PEGylated AuNPs not conjugated with anti-CD133 mAb accumulated mainly at the cellular membrane, nanoparticles conjugated with anti-CD133 mAb were contained within the nuclear region of the cells. Anti-CD133 mAb conjugation facilitated the specific intracellular uptake due to specific antigen-antibody binding interaction. In vitro cytotoxicity studies on HCT116 cells showed that PEGylated AuNPs and PEGylated AuNPs-CD133 did not elicit any toxicity at any of the tested concentrations. Meanwhile, 5-FU-PEGylated AuNPs-CD133 significantly reduced the cell viability relative to the treatment with 5-FU-PEGylated AuNPs without anti-CD133 mAb conjugates (p < 0.0001). This study shows that the conjugation of nanocarriers with the anti-CD133 antibody improves the specific targeting of 5-FU against colorectal cancer cells. These results demonstrate that simultaneous functionalisation of PEGylated AuNPs with antibodies and chemotherapeutic drugs is a viable strategy to combat cancer through targeted drug delivery.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links