Displaying publications 21 - 40 of 76 in total

Abstract:
Sort:
  1. Xia C, Lam SS, Sonne C
    Science, 2020 Oct 30;370(6516):539.
    PMID: 33122375 DOI: 10.1126/science.abf0461
  2. Philipson CD, Cutler MEJ, Brodrick PG, Asner GP, Boyd DS, Moura Costa P, et al.
    Science, 2020 08 14;369(6505):838-841.
    PMID: 32792397 DOI: 10.1126/science.aay4490
    More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.
  3. Ellwanger JH, Lekgoathi MDS, Nemani K, Tarselli MA, Al Harraq A, Uzonyi A, et al.
    Science, 2020 07 03;369(6499):26-29.
    PMID: 32631879 DOI: 10.1126/science.abd1320
  4. Sinding MS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L, et al.
    Science, 2020 06 26;368(6498):1495-1499.
    PMID: 32587022 DOI: 10.1126/science.aaz8599
    Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
  5. Lam SS, Ma NL, Peng W, Sonne C
    Science, 2020 May 29;368(6494):958.
    PMID: 32467384 DOI: 10.1126/science.abc2202
  6. Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, et al.
    Science, 2020 05 22;368(6493):869-874.
    PMID: 32439789 DOI: 10.1126/science.aaw7578
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
  7. Reidpath D, Allotey P, 166 signatories
    Science, 2020 May 15;368(6492):725.
    PMID: 32409468 DOI: 10.1126/science.abc2677
  8. Antoniou C, Burnette K, Christensen-Quick A, Lewinska M, Ji Y, Khalifa MM, et al.
    Science, 2020 04 03;368(6486):26-28.
    PMID: 32241935 DOI: 10.1126/science.abb6859
  9. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al.
    Science, 2020 Mar 20;367(6484).
    PMID: 32193295 DOI: 10.1126/science.aay5012
    Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
  10. Lam SS, Waugh C, Peng W, Sonne C
    Science, 2020 02 14;367(6479):750.
    PMID: 32054755 DOI: 10.1126/science.aba8372
  11. Peng W, Lam SS, Sonne C
    Science, 2020 01 17;367(6475):257-258.
    PMID: 31949072 DOI: 10.1126/science.aba5642
  12. Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, et al.
    Science, 2019 12 13;366(6471).
    PMID: 31831642 DOI: 10.1126/science.aax3100
    The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.
  13. Curnick DJ, Pettorelli N, Amir AA, Balke T, Barbier EB, Crooks S, et al.
    Science, 2019 01 18;363(6424):239.
    PMID: 30655434 DOI: 10.1126/science.aaw0809
  14. Ashton LA, Griffiths HM, Parr CL, Evans TA, Didham RK, Hasan F, et al.
    Science, 2019 01 11;363(6423):174-177.
    PMID: 30630931 DOI: 10.1126/science.aau9565
    Termites perform key ecological functions in tropical ecosystems, are strongly affected by variation in rainfall, and respond negatively to habitat disturbance. However, it is not known how the projected increase in frequency and severity of droughts in tropical rainforests will alter termite communities and the maintenance of ecosystem processes. Using a large-scale termite suppression experiment, we found that termite activity and abundance increased during drought in a Bornean forest. This increase resulted in accelerated litter decomposition, elevated soil moisture, greater soil nutrient heterogeneity, and higher seedling survival rates during the extreme El Niño drought of 2015-2016. Our work shows how an invertebrate group enhances ecosystem resistance to drought, providing evidence that the dual stressors of climate change and anthropogenic shifts in biotic communities will have various negative consequences for the maintenance of rainforest ecosystems.
  15. McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, et al.
    Science, 2018 07 06;361(6397):88-92.
    PMID: 29976827 DOI: 10.1126/science.aat3628
    The human occupation history of Southeast Asia (SEA) remains heavily debated. Current evidence suggests that SEA was occupied by Hòabìnhian hunter-gatherers until ~4000 years ago, when farming economies developed and expanded, restricting foraging groups to remote habitats. Some argue that agricultural development was indigenous; others favor the "two-layer" hypothesis that posits a southward expansion of farmers giving rise to present-day Southeast Asian genetic diversity. By sequencing 26 ancient human genomes (25 from SEA, 1 Japanese Jōmon), we show that neither interpretation fits the complexity of Southeast Asian history: Both Hòabìnhian hunter-gatherers and East Asian farmers contributed to current Southeast Asian diversity, with further migrations affecting island SEA and Vietnam. Our results help resolve one of the long-standing controversies in Southeast Asian prehistory.
  16. Balogun WG, Seeni A
    Science, 2018 03 09;359(6380):1111.
    PMID: 29590034 DOI: 10.1126/science.aar8549
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links