Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Mohamed AF, Kristoffersson AN, Karvanen M, Nielsen EI, Cars O, Friberg LE
    J Antimicrob Chemother, 2016 May;71(5):1279-90.
    PMID: 26850719 DOI: 10.1093/jac/dkv488
    Combination therapy can be a strategy to ensure effective bacterial killing when treating Pseudomonas aeruginosa, a Gram-negative bacterium with high potential for developing resistance. The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model that describes the in vitro bacterial time-kill curves of colistin and meropenem alone and in combination for one WT and one meropenem-resistant strain of P. aeruginosa.
  2. Phaisal W, Albitar O, Chariyavilaskul P, Jantarabenjakul W, Wacharachaisurapol N, Ghadzi SMS, et al.
    PMID: 38661209 DOI: 10.1093/jac/dkae059
    OBJECTIVES: Twelve weekly doses of rifapentine and isoniazid (3HP regimen) are recommended for TB preventive therapy in children with TB infection. However, they present with variability in the pharmacokinetic profiles. The current study aimed to develop a pharmacokinetic model of rifapentine and isoniazid in 12 children with TB infection using NONMEM.

    METHODS: Ninety plasma and 41 urine samples were collected at Week 4 of treatment. Drug concentrations were measured using a validated HPLC-UV method. MassARRAY® SNP genotyping was used to investigate genetic factors, including P-glycoprotein (ABCB1), solute carrier organic anion transporter B1 (SLCO1B1), arylacetamide deacetylase (AADAC) and N-acetyl transferase (NAT2). Clinically relevant covariates were also analysed.

    RESULTS: A two-compartment model for isoniazid and a one-compartment model for rifapentine with transit compartment absorption and first-order elimination were the best models for describing plasma and urine data. The estimated (relative standard error, RSE) of isoniazid non-renal clearance was 3.52 L·h-1 (23.1%), 2.91 L·h-1 (19.6%), and 2.58 L·h-1 (20.0%) in NAT2 rapid, intermediate and slow acetylators. A significant proportion of the unchanged isoniazid was cleared renally (2.7 L·h-1; 8.0%), while the unchanged rifapentine was cleared primarily through non-renal routes (0.681 L·h-1; 3.6%). Participants with the ABCB1 mutant allele had lower bioavailability of rifapentine, while food prolonged the mean transit time of isoniazid.

    CONCLUSIONS: ABCB1 mutant allele carriers may require higher rifapentine doses; however, this must be confirmed in larger trials. Food did not affect overall exposure to isoniazid and only delayed absorption time.

  3. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

  4. Ram M R, Teh X, Rajakumar T, Goh KL, Leow AHR, Poh BH, et al.
    J Antimicrob Chemother, 2019 01 01;74(1):11-16.
    PMID: 30403784 DOI: 10.1093/jac/dky401
    Objectives: Eradication of Helicobacter pylori is influenced by susceptibility to antimicrobial agents, elevated bacterial load and degree of acid inhibition, which can be affected by genotypes of drug-metabolizing enzymes [cytochrome P450 (CYP) 2C19 polymorphism]. Theoretically, the choice and dose of proton pump inhibitor may also influence the suppression of H. pylori infection. The CYP2C19 genotype has recently been found to have an impact on peptic ulcer healing, H. pylori eradication and therapeutic efficacy of proton pump inhibitors.

    Methods: Here, we investigated the impact of the CYP2C19 genotype polymorphism and the success of triple therapy (fluoroquinolones/metronidazole/clarithromycin) on antibiotic-resistant strains in eradicating H. pylori in human subjects with non-ulcer dyspepsia (NUD), in human subjects with peptic ulcer disease (PUD) and in asymptomatic human subjects (positive and negative for H. pylori infection).

    Results: Based on the CYP2C19 genotypes, determined by Droplet Digital PCR (ddPCR) analysis, we found 11.2%, 62.5% and 26.3% corresponding to rapid metabolizers, intermediate metabolizers and poor metabolizers, respectively. However, we did not find any significant effect for homozygous ABCB1 or CYP2C19*2 and CYP2C19*3 alleles. We detected several participants heterozygous for both ABCB1 and CYP2C19*2, CYP2C19*3 and CYP2C19*17 loci. The participants heterozygous for both ABCB1 and CYP2C19*2 and *3 loci should be defined as intermediate and poor metabolizers according to the haplotype analysis in the NUD, PUD and asymptomatic subjects.

    Conclusions: Consequently, fluoroquinolones/metronidazole/clarithromycin-based triple therapies can be used to eradicate H. pylori infection, if one does not know the CYP2C19 genotype of the patient.

  5. Reuter SE, Upton RN, Evans AM, Navaratnam V, Olliaro PL
    J Antimicrob Chemother, 2015 Mar;70(3):868-76.
    PMID: 25377567 DOI: 10.1093/jac/dku430
    BACKGROUND: The determination of dosing regimens for the treatment of malaria is largely empirical and thus a better understanding of the pharmacokinetic/pharmacodynamic properties of antimalarial agents is required to assess the adequacy of current treatment regimens and identify sources of suboptimal dosing that could select for drug-resistant parasites. Mefloquine is a widely used antimalarial, commonly given in combination with artesunate.

    PATIENTS AND METHODS: Mefloquine pharmacokinetics was assessed in 24 healthy adults and 43 patients with Plasmodium falciparum malaria administered mefloquine in combination with artesunate. Population pharmacokinetic modelling was conducted using NONMEM.

    RESULTS: A two-compartment model with a single transit compartment and first-order elimination from the central compartment most adequately described mefloquine concentration-time data. The model incorporated population parameter variability for clearance (CL/F), central volume of distribution (VC/F) and absorption rate constant (KA) and identified, in addition to body weight, malaria infection as a covariate for VC/F (but not CL/F). Monte Carlo simulations predict that falciparum malaria infection is associated with a shorter elimination half-life (407 versus 566 h) and T>MIC (766 versus 893 h).

    CONCLUSIONS: This is the first known population pharmacokinetic study to show falciparum malaria to influence mefloquine disposition. Protein binding, anaemia and other factors may contribute to differences between healthy individuals and patients. As VC/F is related to the earlier portion of the concentration-time profiles, which occurs during acute malaria, and CL/F is more related to the terminal phase during convalescence after treatment, this may explain why malaria was found to be a covariate for VC/F but not CL/F.

  6. Shin J, Baek JY, Kim SH, Song JH, Ko KS
    J Antimicrob Chemother, 2011 May;66(5):1001-4.
    PMID: 21393143 DOI: 10.1093/jac/dkr048
    BACKGROUND: After 7-valent pneumococcal conjugate vaccine (PCV7) introduction, non-vaccine serotypes such as 19A are increasing among Streptococcus pneumoniae. However, only limited data on 19A S. pneumoniae are available in Asian countries.
    METHODS: Out of 1637 S. pneumoniae clinical pneumonia isolates collected during 2008 and 2009 from 10 Asian countries (Korea, Malaysia, Taiwan, Thailand, Saudi Arabia, Hong Kong, India, Japan, the Philippines and Vietnam), 91 serotype 19A S. pneumoniae isolates were identified. Capsular swelling reaction identified serotype 19A isolates. Antimicrobial susceptibility testing was performed on the serotype 19A isolates using the broth microdilution method, and the genotypes of the isolates were assessed using multilocus sequence typing.
    RESULTS: Thirty different sequence types (STs) were identified. The most prevalent clone was ST320 (46 isolates, 51.1%). ST320 was found in Hong Kong, India, Korea, Malaysia, Saudi Arabia and Taiwan. ST320 isolates were mostly multidrug resistant (MDR) and showed significantly higher resistance rates than other STs for cefuroxime, clindamycin, and trimethoprim/sulfamethoxazole.
    CONCLUSIONS: Although diverse clones were identified among 19A S. pneumoniae isolates, MDR ST320 was the predominant clone in Asian countries. Its predominance, even in countries with no or low coverage of PCV7, may indicate that its emergence and dissemination was due to more than just vaccine selection pressure in Asian countries. A longitudinal investigation of the change of serotypes and genotypes since the introduction of PCV7 is required to understand the emergence and dissemination mechanisms of a certain clone of 19A S. pneumoniae isolates.
  7. Song JH, Chang HH, Suh JY, Ko KS, Jung SI, Oh WS, et al.
    J Antimicrob Chemother, 2004 Mar;53(3):457-63.
    PMID: 14963068
    To characterize mechanisms of macrolide resistance among Streptococcus pneumoniae from 10 Asian countries during 1998-2001.
  8. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links