Displaying publications 21 - 40 of 179 in total

Abstract:
Sort:
  1. Souza AA, Ducker C, Argaw D, King JD, Solomon AW, Biamonte MA, et al.
    Trans R Soc Trop Med Hyg, 2021 01 28;115(2):129-135.
    PMID: 33169166 DOI: 10.1093/trstmh/traa118
    Accurate and reliable diagnostic tools are an essential requirement for neglected tropical diseases (NTDs) programmes. However, the NTD community has historically underinvested in the development and improvement of diagnostic tools, potentially undermining the successes achieved over the last 2 decades. Recognizing this, the WHO, in its newly released draft roadmap for NTD 2021-2030, has identified diagnostics as one of four priority areas requiring concerted action to reach the 2030 targets. As a result, WHO established a Diagnostics Technical Advisory Group (DTAG) to serve as the collaborative mechanism to drive progress in this area. Here, the purpose and role of the DTAG are described in the context of the challenges facing NTD programmes.
  2. Southgate BA, Bryan JH
    Trans R Soc Trop Med Hyg, 1992 9 1;86(5):523-30.
    PMID: 1475823
    Quantitative understanding of the transmission dynamics of lymphatic filarial parasites is essential for the rational planning of control strategies. One of the most important determinants of transmission dynamics is the relationship between parasite yield, the success rate of ingested microfilariae (mf) becoming infective larvae in a mosquito vector, and mf density in the source of the human blood meal. Three types of relationship have been recognized in human filaria/mosquito couples--limitation, facilitation and proportionality; facilitation has hitherto been observed only in the couple Wuchereria bancrofti/Anopheles gambiae in Burkina Faso, in experimental studies on a high density mf carrier. The present paper demonstrates facilitation in W. bancrofti/An. gambiae and W. bancrofti/An. arabiensis in lower mf density carriers in The Gambia and Tanzania, and in W. bancrofti/An. funestus in Tanzania. Facilitation was not found in An. melas in The Gambia nor in An. merus in Tanzania. Analysis of published data shows limitation at low level mf densities in W. bancrofti/Culex quinquefasciatus in Sri Lanka, and in the same couple in India. Limitation also occurs in Brugia malayi/Aedes togoi in experimental cats; proportionality occurs in B. malayi/Mansonia bonneae in Malaysia. The epidemiological significance of these host/parasite relationships is discussed, and supporting evidence for its validity is presented from the published results of large-scale control programmes.
  3. Sinniah D, Baskaran G, Vijayalakshmi B, Sundaravelli N
    Trans R Soc Trop Med Hyg, 1981;75(6):903-4.
    PMID: 7330956
  4. Sinniah B, Sinniah D
    Trans R Soc Trop Med Hyg, 1982;76(1):72-4.
    PMID: 7080159
    A survey of 308,101 schoolchildren conducted in 10 of 11 states in Peninsular Malaysia revealed that 10.7% have Pediculus humanus capitis infestation. The results of treatment with 1%, 2% and 5% DDT in coconut oil in 374 cases reveal cure rates of 3.5%, 15.8% and 51.3%, respectively, suggesting that the head louse has probably developed resistance to this insecticide in Malaysia.
  5. Singh S, Khang TF, Andiappan H, Nissapatorn V, Subrayan V
    Trans R Soc Trop Med Hyg, 2012 May;106(5):322-6.
    PMID: 22480791 DOI: 10.1016/j.trstmh.2012.01.009
    Toxoplasma gondii is a public health risk in developing countries, especially those located in the tropics. Widespread infection may inflict a substantial burden on state resources, as patients can develop severe neurological defects and ocular diseases that result in lifelong loss of economic independence. We tested sera for IgG antibody from 493 eye patients in Malaysia. Overall age-adjusted seroprevalence was estimated to be 25% (95% CI: [21%, 29%]). We found approximately equal age-adjusted seroprevalence in Chinese (31%; 95% CI: [25%, 38%]) and Malays (29%; 95% CI: [21%, 36%]), followed by Indians (19%; 95% CI: [13%, 25%]). A logistic regression of the odds for T. gondii seroprevalence against age, gender, ethnicity and the occurrence of six types of ocular diseases showed that only age and ethnicity were significant predictors. The odds for T. gondii seroprevalence were 2.7 (95% CI for OR: [1.9, 4.0]) times higher for a patient twice as old as the other, with ethnicity held constant. In Malays, we estimated the odds for T. gondii seroprevalence to be 2.9 (95% CI for OR: [1.8, 4.5]) times higher compared to non-Malays, with age held constant. Previous studies of T. gondii seroprevalence in Malaysia did not explicitly adjust for age, rendering comparisons difficult. Our study highlights the need to adopt a more rigorous epidemiological approach in monitoring T. gondii seroprevalence in Malaysia.
  6. Singh B, Choo KE, Ibrahim J, Johnston W, Davis TM
    Trans R Soc Trop Med Hyg, 1998 12 23;92(5):532-7.
    PMID: 9861371
    To determine whether glucose turnover is increased in acute falciparum malaria compared to enteric fever in children, steady-state 6,6-D2-glucose turnover was measured in 9 Malaysian children with uncomplicated malaria (6 males and 3 females; median age 10 years, body weight 22 kg) and in 12 with uncomplicated enteric fever (8 males and 4 females; median age 10 years, body weight 24 kg) in acute illness, after quinine (5 malaria patients) and in convalescence. Baseline plasma glucose concentrations in malaria and enteric fever were similar (all values are medians [ranges in brackets]) 5.6 [3.2-11.3] vs. 5.5 [4.2-8.0] mmol/L), as were serum insulin levels (5.6 [0.4-26.5] vs. 6.8 [1.1-22.5] milliunits/L; P > 0.4). Glucose turnover in the malaria patients was higher than in patients with enteric fever (6.27 [2.71-6.87] vs. 5.20 [4.50-6.08] mg/kg.min; P = 0.02) and in convalescence (4.74 [3.35-6.79] mg/kg.min; P = 0.05 vs. acute malaria study), and fell after quinine together with a rise in serum insulin (P = 0.03). Basal plasma lactate concentrations were higher in enteric fever than in malaria (3.4 [1.8-6.4] vs. 0.8 [0.3-3.8] mmol/L; P < 0.0001) and correlated inversely with glucose turnover in this group (rs = -0.60; n = 12; P = 0.02). These data suggest that glucose turnover is 20% greater in malaria than in enteric fever. This might reflect increased non-insulin-mediated glucose uptake in falciparum malaria and/or impaired gluconeogenesis in enteric fever, and may have implications for metabolic complications and their clinical management in both infections.
  7. Singh B, Cox-Singh J, Miller AO, Abdullah MS, Snounou G, Rahman HA
    Trans R Soc Trop Med Hyg, 1996 9 1;90(5):519-21.
    PMID: 8944260
    A modified nested polymerase chain reaction (PCR) method for detection of Plasmodium falciparum, P. vivax and P. malariae was combined with a simple blood collection and deoxyribonucleic acid (DNA) extraction method and evaluated in Malaysia. Finger-prick blood samples from 46 hospital patients and 120 individuals living in malaria endemic areas were spotted on filter papers and dried. The simple Chelex method was used to prepare DNA templates for the nested PCR assay. Higher malaria prevalence rates for both clinical (78.2%) and field samples (30.8%) were obtained with the nested PCR method than by microscopy (76.1% and 27.5%, respectively). Nested PCR was more sensitive than microscopy in detecting mixed P. falciparum and P. vivax infections, detected 5 more malaria samples than microscopy on the first round of microscopical examination, and detected malaria in 3 microscopically negative samples. Nested PCR failed to detect parasite DNA in 2 microscopically positive samples, an overall sensitivity of 97.4% compared to microscopy. The nested PCR method, when coupled with simple dried blood spot sampling, is a useful tool for collecting accurate malaria epidemiological data, particularly in remote regions of the world.
  8. Simpson DI, Bowen ET, Platt GS, Way H, Smith CE, Peto S, et al.
    Trans R Soc Trop Med Hyg, 1970;64(4):503-10.
    PMID: 4394986
  9. Simpson DI, Way HJ, Platt GS, Bowen ET, Hill MN, Kamath S, et al.
    Trans R Soc Trop Med Hyg, 1975;69(1):35-8.
    PMID: 238314
    14 strains of Getah virus were isolated from a variety of mosquito species collected in Sarawak between October 1968 and February 1970. Ten strains were isolated from C. tritaeniorhynchus 7 of them at K. Tijirak. Single strains were isolated from C. gelidus, C. pseudovishnui, M. bonneae/dives and Aanopheles species. 6 of the isolates were obtained in October 1968 when Japanese encephalitis, Tembusu and Sindbis viruses were also very active. The available evidence suggest that Getah virus in Sarawak is maintained in a cycle similar to that of Japanese encephalitis virus and involves C. tritaeniorhynchus, C. gelidus and domestic pigs.
  10. Simpson DI, Smith CE, Marshall TF, Platt GS, Way HJ, Bowen ET, et al.
    Trans R Soc Trop Med Hyg, 1976;70(1):66-72.
    PMID: 1265821
    The possible role of pigs as arbovirus maintenance hosts and their importance as amplifier hosts was studied. Blood samples from 464 pigs of all ages collected in 1962 and 1964 were tested against 10 arboviruses. Antibodies to Japanese encephalitis and Getah viruses were particularly prevalent and their calculated monthly infection rates were 19-5% and 13-3% respectively. In 1969, 447 pigs were bled monthly throughout the year and the infection rates for Japanese encephalitis virus were calculated in pigs during the first year of life. Infection rates were not uniform throughout the year; the rate increases as the pig grew older and there was a marked seasonal increase in the infection rate in the period from November to January. This coincided with the seasonal major population peak of Culex tritaeniorhynchus following intense breeding of this mosquito prior to rice planting. It is suggested that, in Sarawak, the pig acts as a maintenance host of Japanese encephalitis in a cycle involving C. gelidus mosquitoes and also acts as an important amplifier host towards the end of the year in a cycle involving C. tritaeniorhynchus. It is further suggested that Getah virus is maintained in a similar cycle between C. tritaeniorhynchus and pigs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links