Displaying publications 21 - 40 of 127 in total

Abstract:
Sort:
  1. Sergeev A, Motyakin M, Barashkova I, Zaborova V, Krasulya O, Yusof NSM
    Ultrason Sonochem, 2021 Sep;77:105673.
    PMID: 34311321 DOI: 10.1016/j.ultsonch.2021.105673
    The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin-lattice T1 and spin-spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12-C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.
  2. Krishnan S, Abd Ghani N, Aminuddin NF, Quraishi KS, Razafindramangarafara BL, Baup S, et al.
    Ultrason Sonochem, 2021 Jun;74:105576.
    PMID: 33975186 DOI: 10.1016/j.ultsonch.2021.105576
    This study investigates the potential of using small amounts of ionic liquids (IL) to enhance ultrasound-assisted extraction of lipids content from green microalgae. Three imidazolium-based ILs (butyl, octyl and dodecyl), each of them with two anions (bromide and acetate) were tested as additives. Viscosity and surface tension of the ILs aqueous mixtures were analyzed to determine the influence of ILs' anions and alkyl chain length, whereas KI dosimetry experiments were used as an indicator of radicals formation. A key finding suggests that the small addition of ILs improves the ultrasonication either by enhancing the viscosity and reducing the water surface tension, leading to a more powerful acoustic cavitation process or by increasing HO° production likely to oxidize the microalgae cells membranes, and consequently disrupting them on a more efficient manner. KI dosimetry also revealed that long ILs alkyl chain is detrimental. This experimental observation is confirmed thus strengthened as the yield of extracted lipids from green microalgae has shown an incremental trend when the IL concentration also increased. These hypotheses are currently under investigation to spot detailed impact of ILs on cavitation process.
  3. Lim MSW, Yang TC, Tiong TJ, Pan GT, Chong S, Yap YH
    Ultrason Sonochem, 2021 May;73:105490.
    PMID: 33609992 DOI: 10.1016/j.ultsonch.2021.105490
    Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm-2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.
  4. Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Harun WSW
    Ultrason Sonochem, 2021 May;73:105479.
    PMID: 33578278 DOI: 10.1016/j.ultsonch.2021.105479
    Optimum ultrasonication time will lead to the better performance for heat transfer in addition to preparation methods and thermal properties of the nanofluids. Nano particles are dispersed in base fluids like water (water-based fluids), glycols (glycol base fluids) &oils at different mass or volume fraction by using different preparation techniques. Significant preparation technique can enhance the stability, effects various parameters & thermo-physical properties of fluids. Agglomeration of the dispersed nano particles will lead to declined thermal performance, thermal conductivity, and viscosity. For better dispersion and breaking down the clusters, Ultrasonication method is the highly influential approach. Sonication hour is unique for different nano fluids depending on their response to several considerations. In this review, systematic investigations showing effect on various physical and thermal properties based on ultrasonication/ sonication time are illustrated. In this analysis it is found that increased power or time of ideal sonication increases the dispersion, leading to higher stable fluids, decreased particle size, higher thermal conductivity, and lower viscosity values. Employing the ultrasonic probe is substantially more effective than ultrasonic bath devices. Low ultrasonication power and time provides best outcome. Various sonication time periods by various research are summarized with respect to the different thermophysical properties. This is first review explaining sonication period influence on thermophysical properties of graphene nanofluids.
  5. Wang H, Tao Y, Li Y, Wu S, Li D, Liu X, et al.
    Ultrason Sonochem, 2021 May;73:105486.
    PMID: 33639530 DOI: 10.1016/j.ultsonch.2021.105486
    In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.
  6. Rajamma DB, Anandan S, Yusof NSM, Pollet BG, Ashokkumar M
    Ultrason Sonochem, 2021 Apr;72:105413.
    PMID: 33338865 DOI: 10.1016/j.ultsonch.2020.105413
    Acoustic cavitation and sonochemical reactions play a significant role in various applications of ultrasound. A number of dosimetry methods are in practice to quantify the amount of radicals generated by acoustic cavitation. In this study, hydroxyl radical (OH) yields measured by Weissler, Fricke and terephthalic acid dosimetry methods have been compared to evaluate the validities of these methods using a 490 kHz high frequency sonochemical reactor. The OH yields obtained after 5 min sonication at 490 kHz from Weissler and Fricke dosimetries were 200 µM and 289 µM, respectively. Whereas, the OH yield was found to be very low (8 µM) when terephthalic acid dosimetry was used under similar experimental conditions. While the results agree with those reported by Iida et al. (Microchem. J., 80 (2005) 159), further mechanistic details and interfering reactions have been discussed in this study. For example, the amount of OH determined by the Weissler and Fricke methods may have some uncertainty due to the formation of HO2 in the presence of oxygen. In order to account for the major discrepancy observed with the terephthalic acid dosimetry method, high performance liquid chromatography (HPLC) analysis was performed, where two additional products other than 2-hydroxy terephthalic acid were observed. Electrospray ionization mass spectrometry (ESI-MS) analysis showed the formation of 2,5-dihydroxyterephthalic acid as one of the by-products along with other unidentified by-products. Despite the formation of additional products consuming OH, the reason for a very low OH yield obtained by this dosimetry could not be justified, questioning the applicability of this method, which has been used to quantify OH yields generated not only by acoustic cavitation, but also by other processes such as γ-radiolysis. The authors are hoping that this Opinion Paper may initiate further discussion among researchers working in sonochemistry area that could help resolve the uncertainties around using these dosimetry methods.
  7. Tao Y, Li D, Siong Chai W, Show PL, Yang X, Manickam S, et al.
    Ultrason Sonochem, 2021 Apr;72:105410.
    PMID: 33341708 DOI: 10.1016/j.ultsonch.2020.105410
    This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects.
  8. Vallejo-Domínguez D, Rubio-Rosas E, Aguila-Almanza E, Hernández-Cocoletzi H, Ramos-Cassellis ME, Luna-Guevara ML, et al.
    Ultrason Sonochem, 2021 Apr;72:105417.
    PMID: 33352467 DOI: 10.1016/j.ultsonch.2020.105417
    Recently, chitin and chitosan are widely investigated for food preservation and active packaging applications. Chemical, as well as biological methods, are usually adopted for the production of these biopolymers. In this study, modification to a chemical method of chitin synthesis from shrimp shells has been proposed through the application of high-frequency ultrasound. The impact of sonication time on the deproteinization step of chitin and chitosan preparation was examined. The chemical identities of chitin and chitosan were verified using infrared spectroscopy. The influence of ultrasound on the deacetylation degree, molecular weight and particle size of the biopolymer products was analysed. The microscopic characteristics, crystallinity and the colour characteristics of the as-obtained biopolymers were investigated. Application of ultrasound for the production of biopolymers reduced the protein content as well as the particle size of chitin. Chitosan of high deacetylation degree and medium molecular weight was produced through ultrasound assistance. Finally, the as-derived chitosan was applied for beef preservation. High values of luminosity, chromatid and chrome were noted for the beef samples preserved using chitosan films, which were obtained by employing biopolymer subjected to sonication for 15, 25 and 40 min. Notably; these characteristics were maintained even after ten days of packaging. The molecular weight of these samples are 73.61 KDa, 86.82 KDa and 55.66 KDa, while the deacetylation degree are 80.60%, 92.86% and 94.03%, respectively; in the same order, the particle size of chitosan are 35.70 μm, 25.51 μm and 20.10 μm.
  9. Mohd Yusof NS
    Ultrason Sonochem, 2021 Mar;71:105360.
    PMID: 33125959 DOI: 10.1016/j.ultsonch.2020.105360
    The ion exchange constant, KXBr (for the case of cetyltrimethylammonium bromide, CTABr, in this study) is a method dependant characterization of ion exchange process by counterions, X and Br with different relative binding ratios. In this report, the ion exchange constant, KXBr values for micelle systems irradiated under 2 min of sonication at 120 W power using a probe sonicator with 1 cm tip were determined to be 85.2, 125.6 and 122.4 when X  = o-, m- and p-chlorobenzoates, respectively. The values were quantified using a semiempirical kinetic method coupled with Pseudophase Micellar model, and later compared to the same system in the absence of sonication. The sonication was found to amplify the KXBr values by ~ 13-fold for X  = o-chlorobenzoate and ~ 2.5-fold for X  = m- and p-chlorobenzoates. This is due to the improvement of ion exchange process by the oscillation of bubbles generated by acoustic cavitation. An active ion exchange process indicates better stabilization of the micelle aggregational structure by the penetration of the introduced counterions, X into the micelle Stern layer leading to the growth of the micelle. This is supported by the remarkable increase in the viscosity of the micelle system by > 7-fold for X  = o-chlorobenzoate and by > 2-folds for X  = m- and p-chlorobenzoates. Sonication was also found to induce maximum viscoelasticity at lower concentration ratio of [CTABr]:[X]. The ability of ultrasound to induce micelle growth and exhibiting viscoelasticity at lower concentration of counterionic additive will be very useful in technologies where viscoelastic solution is desired such as in oil drilling and centralized heating and cooling system.
  10. Manickam S, Sivakumar K, Pang CH
    Ultrason Sonochem, 2020 Dec;69:105258.
    PMID: 32702637 DOI: 10.1016/j.ultsonch.2020.105258
    O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.
  11. Shi X, Karachi A, Hosseini M, Yazd MS, Kamyab H, Ebrahimi M, et al.
    Ultrason Sonochem, 2020 Nov;68:104460.
    PMID: 30712851 DOI: 10.1016/j.ultsonch.2019.01.018
    The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g- of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.
  12. Thari FZ, Tachallait H, El Alaoui NE, Talha A, Arshad S, Álvarez E, et al.
    Ultrason Sonochem, 2020 Nov;68:105222.
    PMID: 32585575 DOI: 10.1016/j.ultsonch.2020.105222
    A rapid and green method for the synthesis of novel N-thiazolidine-2,4-dione isoxazoline derivatives 5 from N-allyl-5-arylidenethiazolidine-2,4-diones 3 as dipolarophiles with arylnitrile oxides via 1,3-dipolar cycloaddition reaction. The corresponding N-allyl substituted dipolarophiles were prepared by one-pot method from thiazolidine-2,4-dione with aldehydes using Knoevenagel condensation followed by N-allylation of thiazolidine-2,4-dione in NaOH aqueous solution under sonication. In addition, the isoxazoline derivatives 5 were synthesized by regioselective and chemoselective 1,3-dipolar cycloaddition using inexpensive and mild NaCl/Oxone/Na3PO4 as a Cl source, oxidant and/or catalyst under ultrasonic irradiation in EtOH/H2O (v/v, 2:1) as green solvent. All synthesized products are furnished in good yields in the short reaction time, and then their structures were confirmed by NMR, mass spectrometry and X-ray crystallography analysis.
  13. Meroni D, Jiménez-Salcedo M, Falletta E, Bresolin BM, Kait CF, Boffito DC, et al.
    Ultrason Sonochem, 2020 Oct;67:105123.
    PMID: 32283492 DOI: 10.1016/j.ultsonch.2020.105123
    The nonsteroidal anti-inflammatory drug sodium diclofenac (DC) is an emerging water pollutant which resists conventional wastewater treatments. Here the sonophotocatalytic degradation of DC was carried out using micrometric TiO2 (both pristine and Ag-decorated), UV-A irradiation and 20 kHz pulsed ultrasound. Sonophotocatalytic tests were compared with photolysis, sonolysis, sonophotolysis, sonocatalysis and photocatalysis data performed in the same conditions. A synergy index of over 2 was determined for tests with pristine TiO2, while values close to 1.3 were observed for Ag-TiO2. Reaction intermediates were studied by HPLC-MS, showing degradation mechanisms activated by hydroxyl radicals. Similar pathways were identified for photocatalytic and sonophotocatalytic tests, although the latter led to more oxidized compounds. Different reactor configurations (static and dynamic set ups) were studied. Sequential and simultaneous application of UV light and ultrasound led to similar performance. The role of water matrix was investigated using ultrapure and drinking water, showing marked detrimental effects of electrolytes on the DC degradation. Overall, the combined treatment proved more efficient than photocatalysis alone especially in demanding working conditions, like in drinking water matrices.
  14. Khoo KS, Chew KW, Yew GY, Manickam S, Ooi CW, Show PL
    Ultrason Sonochem, 2020 Oct;67:105052.
    PMID: 32278245 DOI: 10.1016/j.ultsonch.2020.105052
    The purpose of this investigation is to evaluate the implementation of ultrasound-assisted liquid biphasic flotation (LBF) system for the recovery of natural astaxanthin from Haematococcus pluvialis microalgae. Various operating conditions of ultrasound-assisted LBF systems such as the position of ultrasound horn, mode of ultrasonication (pulse and continuous), amplitude of ultrasonication, air flowrate, duration of air flotation, and mass of H. pluvialis microalgae were evaluated. The effect of ultrasonication on the cellular morphology of microalgae was also assessed using microscopic analysis. Under the optimized operating conditions of UALBF, the maximum recovery yield, extraction efficiency, and partition coefficient of astaxanthin were 95.08 ± 3.02%, 99.74 ± 0.05%, and 185.09 ± 4.78, respectively. In addition, the successful scale-up operation of ultrasound-assisted LBF system verified the practicability of this integrated approach for an effective extraction of natural astaxanthin.
  15. Kohila Rani K, Karuppiah C, Wang SF, Alaswad SO, Sireesha P, Devasenathipathy R, et al.
    Ultrason Sonochem, 2020 Sep;66:105111.
    PMID: 32248043 DOI: 10.1016/j.ultsonch.2020.105111
    Bifunctional electrocatalysts to enable efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for fabricating high performance metal-air batteries and fuel cells. Here, a defect rich nitrogen and sulfur co-doped graphene/iron carbide (NS-GR/Fe3C) nanocomposite as an electrocatalyst for ORR and OER is demonstrated. An ink of NS-GR/Fe3C is developed by homogeneously dispersing the catalyst in a Nafion containing solvent mixture using an ultrasonication bath (Model-DC150H; power - 150 W; frequency - 40 kHz). The ultrasonically prepared ink is used for preparing the electrode for electrochemical studies. In the case of ORR, the positive half-wave potential displayed by NS-GR/Fe3C is 0.859 V (vs. RHE) and for the OER, onset potential is 1.489 V (vs. RHE) with enhanced current density. The optimized NS-GR/Fe3C electrode exhibited excellent ORR/OER bifunctional activities, high methanol tolerance and excellent long-term cycling stability in an alkaline medium. The observed onset potential for NS-GR/Fe3C electrocatalyst is comparable with the commercial noble metal catalyst, thereby revealing one of the best low-cost alternative air-cathode catalysts for the energy conversion and storage application.
  16. Dheyab MA, Aziz AA, Jameel MS, Khaniabadi PM, Mehrdel B
    Ultrason Sonochem, 2020 Jun;64:104865.
    PMID: 31983562 DOI: 10.1016/j.ultsonch.2019.104865
    Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe3O4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe3O4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe3O4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe3O4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.
  17. Raviadaran R, Ng MH, Manickam S, Chandran D
    Ultrason Sonochem, 2020 Jun;64:104995.
    PMID: 32106064 DOI: 10.1016/j.ultsonch.2020.104995
    In this work, the effects of thickeners and tonicity towards producing stable palm oil-based water-in-oil-in-water (W/O/W) multiple nanoemulsion using ultrasound and microfluidizer were investigated. Palm oil, Sucragel, polyglycerol polyricinoleate, Tween 80, Xanthan gum, and NaCl were used. W/O/W was formed under the optimized conditions of ultrasound at 40% amplitude and for 180 s of irradiation time, whereas for the microfluidizer, the optimized conditions were 350 bar and 8 cycles. This is the first work that successfully utilized Sucragel (oil-based thickener) in imparting enhanced stability in W/O/W. W/O/W with isotonic stabilization produced the lowest change in the mean droplet diameter (MDD), NaCl concentration, and water content by 1.5%, 2.6%, and 0.4%, respectively, due to reduced water movement. The final optimized W/O/W possessed MDD and dispersity index of 175.5 ± 9.8 and 0.232 ± 0.012, respectively. The future direction of formulating stable W/O/W would be by employing oil phase thickeners and isotonicity. The observed ~12 times lesser energy consumed by ultrasound than microfluidizer to generate a comparable droplet size of ~235 nm, further confirms its potential in generating the droplets energy-efficiently.
  18. Sodipo BK, Aziz AA
    Ultrason Sonochem, 2020 Jun;64:104856.
    PMID: 31889660 DOI: 10.1016/j.ultsonch.2019.104856
    Optimization of sonochemical method of functionalizing a Silane coupling agent, Amino-Silane on Superparamagnetic Iron Oxide Nanoparticles (SPION) using Central Composite Design is reported. The Amino-Silane is grafted on the SPION in an iced bath environment using a Vibra-Cell 20 kHz ultrasonic irradiator with 13 mm diameter horn. Throughout the experiment amplitude of the ultrasonic device is maintained at 47%. The percentage atomic compositions of various APTES elements which bind to the SPION due to the ultrasonic irradiation were determined using X-ray photoelectron spectrometer (XPS). The influence of ultrasonic irradiation time and amount of APTES required for facile, rapid and effective functionalization of Organo-metallic compound on SPION are optimized. The optimized sonication time and amount of APTES are 8.49 min and 3.40 ml, respectively. The predicted results were validated with experimental data. Using the optimized values APTES were functionalized on the SPION experimentally and the results were compared. The experimental results validate the predicted data. Results show that very minimum sonication time is required for effective grafting of APTES on SPION.
  19. Sukor NF, Jusoh R, Kamarudin NS, Abdul Halim NA, Sulaiman AZ, Abdullah SB
    Ultrason Sonochem, 2020 Apr;62:104876.
    PMID: 31796331 DOI: 10.1016/j.ultsonch.2019.104876
    Phenolic acids of oak gall were extracted using ultrasonic-probe assisted extraction (UPAE) method in the presence of ionic liquid. It was compared with classical ultrasonic-bath assisted extraction (CUBAE) and conventional aqueous extraction (CAE) method, with and without the presence of ionic liquid. Remarkably, the UPAE method yielded two-fold higher extraction yield with the presence of ionic liquid, resulting 481.04 mg/g for gallic acids (GA) and 2287.90 mg/g for tannic acids (TA), while a decreased value of 130.36 mg/g for GA and 1556.26 mg/g for TA were resulted with the absence of ionic liquid. Intensification process resulted the highest yield of 497.34 mg/g and 2430.48 mg/g for GA and TA, respectively, extracted at temperature 50 °C with sonication intensity of 8.66 W/cm2 and 10% duty cycle, diluted in ionic liquid, 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [Bmim][Tf2N] at concentration of 0.10 M with sample-to-solvent ratio 1:10 for 8 h. Peleg's model successfully predicted the UPAE process confirming that extraction capacity is the controlling factor in extracting phenolic acids. Hence, it can be concluded that UPAE method and ionic liquid have synergistic effect as it effectively enhanced the extraction efficiency to increase the bioactive constituents yield.
  20. Gowthaman NSK, Ngee Lim H, Balakumar V, Shankar S
    Ultrason Sonochem, 2020 Mar;61:104828.
    PMID: 31670250 DOI: 10.1016/j.ultsonch.2019.104828
    A novel organic-inorganic nile-blue - CeO2 (CeO2/NB) nanohybrid has been synthesized by environmentally benign ultrasonic irradiation method for the selective determination of the environmental pollutant, carcinogenic hydrazine (HZ) in environmental water samples. Hydrophobic dyes have generally been as redox mediators in electrochemical sensors fabrication due to strong electron transfer capacity and they would allow the oxidation and reduction of the analytes at lower potentials. The CeO2 nanoparticles were initially synthesized by the ultrasonic irradiation of Ce(NO3)2, NH4OH and ethylene glycol mixture for 6 h using probe sonicator (20 kHz, 100 W) followed by calcination. The organic-dye NB was then added and ultrasonicated further 30 min for the formation of CeO2/NB nanohybrid material. Various spectroscopic and microscopic tools such as UV-vis and FT-IR spectroscopy, XRD, SEM and high-solution TEM and surface analysis tool Brunauer-Emmett-Teller (BET) confirm the formation of the nanohybrid. HR-TEM images showed the well-covered CeO2 on NB molecules and the average size of the nanohybrid is ~35 nm. For the fabrication of environmental pollutant electrochemical sensor, the prepared CeO2/NB nanohybrid was drop-casted on the electrode surface and utilized for the determination of HZ. The nanohybrid modified electrode exhibits higher electrocatalytic activity by showing enhanced oxidation current and less positive potential shift towards HZ oxidation than the bare and individual CeO2 and NB modified electrodes. The fabricated sensor with excellent reproducibility, repeatability, long-term storage stability and cyclic stability exhibited the sensational sensitivity (484.86 µA mM-1 cm-2) and specificity in the presence of 50-fold possible interfering agents with the lowest limit of detection of 57 nM (S/N = 3) against HZ. Utilization of the present sensor in environmental samples with excellent recovery proves it practicability in the determination of HZ in real-time application.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links