Affiliations 

  • 1 Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico
  • 2 Benemérita Universidad Autónoma de Puebla, Centro Universitario de Vinculación y Transferencia de Tecnología, Prol. 24 sur S/N CU, San Manuel C. P. 72570, Puebla, Mexico
  • 3 Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico. Electronic address: heriberto.hernandez@correo.buap.mx
  • 4 Department of Chemical Engineering, Khalifa University, PO Box: 127788, Abu Dhabi, United Arab Emirates
  • 5 Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
  • 6 Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia
  • 7 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia. Electronic address: PauLoke.Show@nottingham.edu.my
Ultrason Sonochem, 2021 Apr;72:105417.
PMID: 33352467 DOI: 10.1016/j.ultsonch.2020.105417

Abstract

Recently, chitin and chitosan are widely investigated for food preservation and active packaging applications. Chemical, as well as biological methods, are usually adopted for the production of these biopolymers. In this study, modification to a chemical method of chitin synthesis from shrimp shells has been proposed through the application of high-frequency ultrasound. The impact of sonication time on the deproteinization step of chitin and chitosan preparation was examined. The chemical identities of chitin and chitosan were verified using infrared spectroscopy. The influence of ultrasound on the deacetylation degree, molecular weight and particle size of the biopolymer products was analysed. The microscopic characteristics, crystallinity and the colour characteristics of the as-obtained biopolymers were investigated. Application of ultrasound for the production of biopolymers reduced the protein content as well as the particle size of chitin. Chitosan of high deacetylation degree and medium molecular weight was produced through ultrasound assistance. Finally, the as-derived chitosan was applied for beef preservation. High values of luminosity, chromatid and chrome were noted for the beef samples preserved using chitosan films, which were obtained by employing biopolymer subjected to sonication for 15, 25 and 40 min. Notably; these characteristics were maintained even after ten days of packaging. The molecular weight of these samples are 73.61 KDa, 86.82 KDa and 55.66 KDa, while the deacetylation degree are 80.60%, 92.86% and 94.03%, respectively; in the same order, the particle size of chitosan are 35.70 μm, 25.51 μm and 20.10 μm.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.