Displaying publications 1 - 20 of 318 in total

  1. Salleh, R.M., Djauhari, M.A.
    ASM Science Journal, 2012;6(1):1-13.
    A monitoring procedure was introduced for process variability in a multivariate setting based on individual observations which was a combination of (i) robust high breakdown point approach in the set-up stage to determine the reference sample and (ii) the use of Wilks chart in the mass production stage. This setting is what the Malaysian manufacturing industry is currently lacking in, especially when a robust approach must be used. The advantage of this procedure was revealed by using the case of a female shrouded connector production process in a Malaysian industry. Moreover, this procedure could also be used in any process quality monitoring and for any industry. A recommendation for quality practitioners was also addressed.
    Matched MeSH terms: Molecular Weight
  2. Khan, Sohail. A., Mat Jafri, M.Z., Jaafar, M.S., Low, K.L.
    A modified potential of the sudden approximation, modified to include interactions among nuclei of different radii, is applied to explain the mass asymmetry of fission fragments in the thermal fission of Uranium-235. The results are encouraging in that the asymmetry feature in the fission yield is displayed. It appears that the mass asymmetry is a feature that can be explained without incorporating other effects. However, close correspondence requires addition of extra features.
    Matched MeSH terms: Molecular Weight
  3. Bakhshan, Y., Shahrir Abdullah
    An in-house quasi-dimensional code has been developed which simulate the overlap, intake, compression, combustion, as well as expansion and exhaust processes of a homogeneous charged internal combustion engine (ICE). A detailed chemical kinetic mechanism, constituting of 39 species and 148 elementary reactions, has been used in conjunction with above code to study the combustion of CNG under IC engine conditions. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of compression ratio, initial pressure, intake temperature and equivalence ratio, on the time of ignition and fuel burning rate. The results obtained from the modelling show a good agreement with the experimental data.
    Matched MeSH terms: Molecular Weight
  4. Aiyede M, Lim XY, Russell AAM, Patel RP, Gueven N, Howells DW, et al.
    J Neurotrauma, 2023 Jan;40(1-2):4-21.
    PMID: 35880422 DOI: 10.1089/neu.2022.0020
    The identification of effective pharmacotherapies for traumatic brain injury (TBI) remains a major challenge. Treatment with heparin and its derivatives is associated with neuroprotective effects after experimental TBI; however, the optimal dosage and method of administration, modes of action, and effects on hemorrhage remain unclear. Therefore, this review aimed to systematically evaluate, analyze, and summarize the available literature on the use of heparin and low molecular weight heparins (LMWHs) as treatment options for experimental TBI. We searched two online databases (PubMed and ISI Web of Science) to identify relevant studies. Data pertaining to TBI paradigm, animal subjects, drug administration, and all pathological and behavior outcomes were extracted. Eleven studies met our pre-specified inclusion criteria, and for outcomes with sufficient numbers, data from seven publications were analyzed in a weighted mean difference meta-analysis using a random-effects model. Study quality and risk of bias were also determined. Meta-analysis revealed that heparin and its derivatives decreased brain edema, leukocyte rolling, and vascular permeability, and improved neurological function. Further, treatment did not aggravate hemorrhage. These findings must be interpreted with caution, however, because they were determined from a limited number of studies with substantial heterogeneity. Also, overall study quality was low based on absences of data reporting, and potential publication bias was identified. Importantly, we found that there are insufficient data to evaluate the variables we had hoped to investigate. The beneficial effects of heparin and LMWHs, however, suggest that further pre-clinical studies are warranted.
    Matched MeSH terms: Heparin, Low-Molecular-Weight/pharmacology; Heparin, Low-Molecular-Weight/therapeutic use
  5. Usang MD, Ivanyuk FA, Ishizuka C, Chiba S
    Sci Rep, 2019 Feb 06;9(1):1525.
    PMID: 30728435 DOI: 10.1038/s41598-018-37993-7
    We have decomposed to symmetric and asymmetric modes the mass-TKE fission fragment distributions calculated by 4-dimensional Langevin approach and observed how the dominant fission mode and symmetric mode change as functions of [Formula: see text] of the fissioning system in the actinides and trans-actinide region. As a result, we found that the symmetric mode makes a sudden transition from super-long to super short fission mode around 254Es. The dominant fission modes on the other hand, are persistently asymmetric except for 258Fm, 259Fm and 260Md when the dominant fission mode suddenly becomes symmetric although it returns to the asymmetric mode around 256No. These correlated "twin transitions" have been known empirically by Darleane Hoffman and her group back in 1989, but for the first time we have given a clear explanation in terms of a dynamical model of nuclear fission. More specifically, since we kept the shape model parameters unchanged over the entire mass region, we conclude that the correlated twin transition emerge naturally from the dynamics in 4-D potential energy surface.
    Matched MeSH terms: Molecular Weight
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Jan 11;122(1):011803.
    PMID: 31012697 DOI: 10.1103/PhysRevLett.122.011803
    A search is performed for dark matter particles produced in association with a top quark pair in proton-proton collisions at sqrt[s]=13  TeV. The data correspond to an integrated luminosity of 35.9  fb^{-1} recorded by the CMS detector at the LHC. No significant excess over the standard model expectation is observed. The results are interpreted using simplified models of dark matter production via spin-0 mediators that couple to dark matter particles and to standard model quarks, providing constraints on the coupling strength between the mediator and the quarks. These are the most stringent collider limits to date for scalar mediators, and the most stringent for pseudoscalar mediators at low masses.
    Matched MeSH terms: Molecular Weight
  7. Sarjidan MAM, Shuhaimi A, Majid WHA
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):6995-7003.
    PMID: 31039852 DOI: 10.1166/jnn.2019.16724
    A simple spin-coating process for fabricating vertical organic light-emitting transistors (VOLETs) is realized by utilizing silver nanowire (AgNW) as a source electrode. The optical, electrical and morphological properties of the AgNW formation was initially optimized, prior VOFET fabrication. A high molecular weight of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] MEH-PPV was used as an organic semiconductor layer in the VOFET in forming a multilayer structure by solution process. It was found that current density and luminance intensity of the VOLET can be modulated by a small magnitude of gate voltage. The modulation process was induced by changing an injection barrier via gate voltage bias. A space-charge-limited current (SCLC) approach in determining transistor mobility has been introduced. This preliminary and fundamental work is beneficial towards all-solution processing display devices.
    Matched MeSH terms: Molecular Weight
  8. Normah, I., Siti Hafsah, M.S., Nurul Izzaira, A.
    Green mussel (Perna viridis) was hydrolysed with alcalase under two different conditions consisting of pH7, E/S5% or pH 9, E/S 3% at 60°C for two hours. Hydrolysis at pH 9, E/S3% resulted in a higher degree of hydrolysis (DH) than pH7, E/S5% with degree of hydrolysis of 37.00% and 28.33%, respectively. The green mussel hydrolysates were characterized by molecular weight of
    Matched MeSH terms: Molecular Weight
  9. Ismail, N.A, Noranizan, M.A., Shamsudin, R., Karim, R
    Cassava chips that exist in the current market have no standardisation and cannot be stacked
    nicely into cylindrical container. The objectives of this work are to determine the different dimension of cassava chips produced with different thickness and to develop stackable chips during mass production. Fresh cassava tubers were harvested, washed, peeled and sliced. The thickness measurements used were 1.0 mm, 1.5 mm, 1.75 mm and 2.0 mm and 1.27 mm thickness was measured from commercial potato chips as a controlled sample. Then, it was fried in deep fat fryer with the temperature of 170°C. For each thickness studied, different
    numbers of slice (10, 20, 30 and 40 slices) were fried simultaneously. Results showed that there
    are 6 shapes of fried chips produced during the frying. To conclude, thickness of the slice and
    number of slices fried simultaneously give impact towards the shape of fried chip.
    Matched MeSH terms: Molecular Weight
  10. Kow CS, Hasan SS
    J Vasc Surg Venous Lymphat Disord, 2020 09;8(5):900-901.
    PMID: 32561464 DOI: 10.1016/j.jvsv.2020.06.006
    Matched MeSH terms: Heparin, Low-Molecular-Weight*
  11. Saminathan M, Tan HY, Sieo CC, Abdullah N, Wong CM, Abdulmalek E, et al.
    Molecules, 2014 Jun 12;19(6):7990-8010.
    PMID: 24927368 DOI: 10.3390/molecules19067990
    Condensed tannins (CTs) form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP) and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs) from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1-F5) measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn) of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight--from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.
    Matched MeSH terms: Molecular Weight
  12. Mohamad Shukri Sirat, Edhuan Ismail, Hadi Purwanto, Mohd Hanafi Ani, Mohd Asyadi Azam Mohd Abid
    Sains Malaysiana, 2017;46:1033-1038.
    The fabrication of high quality graphene has become the main interest in current chemical vapour deposition (CVD) method due to the scalability for mass production of graphene-based electronic devices. The quality of graphene is determined by defect density, number of layers and properties changed such as electron mobility, transparency and conductivity as compared to the pristine graphene. Here, we did a study on the effects of reaction conditions such as methane, CH4 concentration and deposition time towards the quality of graphene produced. We found that by lowering both CH4 concentration down to 20% and deposition time to 5 min, a better quality graphene was produced with higher I2D/IG ratio of 0.82 compared to other reaction condition. Through the analysis, we concluded that there are two important parameters to be controlled to obtain high quality graphene.
    Matched MeSH terms: Molecular Weight
  13. Ibrahim MZ, Norashikin MZ
    J Nanosci Nanotechnol, 2010 Sep;10(9):6211-5.
    PMID: 21133176
    This paper reports the performance of two different artificial neural networks (ANN), Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) compared to conventional software for prediction of the pore size of the asymmetric polyethersulfone (PES) ultrafiltration membranes. ANN has advantages such as incredible approximation, generalization and good learning ability. The MLP are well suited for multiple inputs and multiple outputs while RBF are powerful techniques for interpolation in multidimensional space. Three experimental data sets were used to train the ANN using polyethylene glycol (PEG) of different molecular weights as additives namely as PEG 200, PEG 400 and PEG 600. The values of the pore size can be determined manually from the graph and solve it using mathematical equation. However, the mathematical solution used to determine the pore size and pore size distribution involve complicated equations and tedious. Thus, in this study, MLP and RBF are applied as an alternative method to estimate the pore size of polyethersulfone (PES) ultrafiltration membranes. The raw data needed for the training are solute separation and solute diameter. Values of solute separation were obtained from the ultrafiltration experiments and solute diameters ware calculated using mathematical equation. With the development of this ANN model, the process to estimate membrane pore size could be made easier and faster compared to mathematical solutions.
    Matched MeSH terms: Molecular Weight
  14. Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Azmi Ibrahim, Che Seman Mahmood, Putra, Edy Giri Rachman, Muhammad Rawi Muhammad Zin, et al.
    Alumina powder was synthesized from an aluminum precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was of high purity and highly crystalline D-phase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder.
    Matched MeSH terms: Molecular Weight
  15. Razali, A.N., Amin, A.M., Sarbon, N.M.
    This study investigated the antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate (CSGH) at different molecular weights (10, 5 and 3 kDa). Antioxidant activities studied included reducing power, ferrous ion chelation, DPPH (1, 1- diphenyl-2- picrylhydrazyl) radical scavenging, and superoxide anion scavenging. Functional properties studied included emulsifying and foaming properties as well as fat and water binding capacity. Results showed significant differences (p
    Matched MeSH terms: Molecular Weight
  16. Normah Ismail, Nur’ Ain Mohamad Kharoe
    Unripe and ripe bilimbi (Averrhoa bilimbi. L) were ground and the extracted juices were partially purified by ammonium sulfate precipitation at the concentrations of 40 and 60% (w/v). The collected proteases were analysed for pH, temperature stability, storage stability, molecular weight distribution, protein concentration and protein content. Protein content of bilimbi fruit was 0.89 g. Protease activity of both the unripe and ripe fruit were optimum at pH 4 and 40ºC when the juice were purified at 40 and 60% ammonium sulfate precipitation. A decreased in protease activity was observed during the seven days of storage at 4°C. Molecular weight distribution indicated that the proteases protein bands fall between 10 to 220 kDa. Protein bands were observed at 25, 50 and 160 kDa in both the unripe and ripe bilimbi proteases purified with 40% ammonium sulfate, however, the bands were more intense in those from unripe bilimbi. No protein bands were seen in proteases purified with 60% ammonium sulfate. Protein concentration was higher for proteases extracted with 40% ammonium sulfate at both ripening stages. Thus, purification using 40% ammonium sulfate precipitation could be a successful method to partially purify proteases from bilimbi especially from the unripe stage.
    Matched MeSH terms: Molecular Weight
  17. Tay C. L., Law M. C.
    The modelling of a three-dimensional (3-D) molten carbonate fuel cell (MCFC) was developed to study the effects of gas flow direction (co-flow and counter-flow) in anode and cathode on the generated power density by solving the mass and momentum conservation equations, electrochemical reaction and heat transfer. The simulation result of the co-flow temperature distribution was compared with the experimental data obtained from open literature. The molar fraction distribution of gases in the anode and cathode gas channels and temperature distribution across the cell were compared between two different flow directions. Furthermore, the performance of MCFC, which operates in the temperature range of 823 - 1023 K, was analysed by comparing the generated power density. The results showed that MCFC with co-flow attained higher power density compared to that of counter-flow at 873 K. However, at higher temperature of 1023 K, the generated power density was the same for both gas flow directions.
    Matched MeSH terms: Molecular Weight
  18. Aidah Jumahat, Napisah Sapiai, Eliya Farah Hana Mohd Kamal
    This paper investigates the effect of acid and silane treatment of Carbon Nanotubes (CNT) on wear properties of epoxy polymer composite. The wear test done was based on ASTM D3389 standard using the Abrasive Wear Tester (TR 600). Characterisation analysis was also done using Transmission Electron Microscopy (TEM) in order to study the dispersion of the CNT inside the epoxy matrix. When untreated CNT was added to the epoxy with amounts of 0.5, 0.75 and 1.0 wt%, the wear rates did not improve except for 0.5 wt% CNT filled epoxy. This was due to the lack of dispersion which causes larger chunks of material being dug out, thus contributing to a higher mass loss and wear rate. When treated with acid and silane, 0.75 wt% and 1.0 wt% CNT filled epoxy composites showed improvement. The TEM images of 0.5 wt%, 0.75 wt% and 1.0 wt% PCNT filled epoxy supported the claim of the lack of dispersion of PCNT inside the epoxy.
    Matched MeSH terms: Molecular Weight
  19. Leman, A.M., Fakhrurrazi Rahman, Dafit Feriyanto
    The simulation of the catalytic converter system is quite needed in order to characterize the catalyst and also
    optimizing the monolithic design for the gas emission in the catalytic converter and other related mechanism. The
    objective of this study is to obtain quantitative description of the gas emission in the catalytic converter system of
    natural powered automobile exhaust gas using ANSYS Software. This work will present a finite element calculation
    to predict and evaluate the mass transfer, energy balance and velocity of gas emission in the catalytic converter. The
    expected result for this research is to evaluate data of the gas emission obtained from the software to be compared with
    the manual experiment in order to verify the effectiveness of modified catalytic converter.
    Matched MeSH terms: Molecular Weight
  20. Ainun Zuriyati Mohamed, Sarani Zakaria, Roslinda Shamsuddin, Mustaffa Abdullah
    This paper reports on the preparation of magnetic lumen loaded handsheets from bleached and unbleached mixed tropical hardwood kraft pulps. The lumen coating technique is a physical approach whereby fillers were deposited inside the fibre lumen. In order to produce magnetically responsive fibres, magnetic fillers were loaded into the fibre lumen. The magnetic filler chosen was magnetite which is usually used to make mylar as found in a diskette. Low and high molecular weights of polyacrylamide (PAM) were used as retention aids. The effect of different molecular weight of PAM on filler content in the bleached and unbleached handsheets were studied. The results showed that the amount of fillers deposited in the pulp fibres increased with increasing molecular weight of PAM using both pulps. However the bleached pulps gave better lumen loading than the unbleached when using high molecular weight of PAM.
    Matched MeSH terms: Molecular Weight
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links