Displaying publications 1 - 20 of 103 in total

Abstract:
Sort:
  1. Ibrahim, M.A., Jani, N.A.M., Kudin, T.I.T., Ali, A.M.M., Yusof, R.M., Hassan, O.H.
    MyJurnal
    Materials that can enhance the sensitivity and selectivity of a biosensor are greatly in demand. The nanocomposition of thionine (Th) and graphene can increase the electroconductivity of the working electrode used. Graphene is a very good electrical conductor but is also hydrophobic in nature. Composition with thionine gives it the capability to disperse well in water. Plus, thionine provides the opportunity for DNA probes to be immobilized due to the presence of the amino group in its structure. In this research, the thionine-graphene (Th-G) nanocomposite was synthesized through filtration and characterised using scanning electron microscopy (SEM) to distinguish different elements coexist in the nanocomposite and to investigate the microstructure changes of the nanocomposite to confirm the composition. Different elements were analyzed to test the presence of both thionine and graphene in the composition. Physical characterisation through SEM proved the nanocomposition was a success.
  2. Asdarina, Y., Abdurrahman, H.N., Amirah, N.F.S., Natrah, S.A.R., Norasmah, M.M., Zulkafli, H.
    MyJurnal
    Increasing demands in palm oil industry hence resulting the production of palm oil to increase. It is then creating a major problem in disposing the waste to be treat in appropriate ways. The governments are forced to look for alternative technology for the palm oil mill effluent (POME) treatment because the demand of oil increases with the awareness on increasing environmental issue. Therefore, a new technology must be found in order to reduce energy consumption, to meet legal requirements on emission and for cost reduction and also increased quality of water treatment. Membrane Anaerobic System (MAS) is a promising alternative way to overcome these issues. In this study, the efficiency of the MAS performance increases to 99.03% in ten days operation. The application of Monod, Contois and Chen & Hashimoto models were used to analyze the performance of MAS for treating POME. The results from the experiment show the substrate removal model is well fits for estimation of kinetics membrane anaerobic system. Amongst them, the Contois and Monod models predicted the bio-kinetic reactions of the MAS very well with coefficient of determination (R2>97%) values. The MAS bioreactor was creating to be an improvement method as well as successful biological treatment since the graph shows linearized which is good agreement with reported in literature.
  3. Nurlaila Ismail, Mohd Hezri Fazalul Rahiman, Mohd Nasir Taib, Mastura Ibrahim, Seema Zareen, Saiful Nizam Tajuddin
    MyJurnal
    This paper presents the application of Solid Phase Micro Extraction (SPME) coupled with Gas Chromatography - Mass Spectrometry (GC-MS) and Gas Chromatography - Flame Ionization Detector (GC-FID) in characterizing the agarwood incense. The work involved three types of SPME fibres at 30 minute sampling time. The fibres are 50/30 μm divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS), 65 μm polydi methylsiloxane-divinylbenzene (PDMS-DVB) and 85 μm carboxen-polydimethyl siloxane (CAR-PDMS). The results showed that among the many compounds extracted by GC-MS coupled with SPME, six compounds were substantially found in high quality agarwood incense due to their high percentage area (%). They are β-maaliene, α-elemol, β-selinene, 10-epi-γ-eudesmol, agarospirol and caryophellene oxide. The finding offers a new approach for establishing the volatile profile of agarwood incense components as well as for agarwood grading and discrimination.
  4. Aniza Omar, Ainnur Sherene Kamisan, Muhd Zu Azhan bin Yahya, Siti Zafirah Zainal Abidin, Ab Malik Marwan Ali, Siti Irma Yuana Saaid
    MyJurnal
    Magnesium-based polymer gel electrolytes consist of magnesium triflate (MgTf) salt, a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) solvents as well as cellulose acetate as a polymeric agent were prepared via direct dissolution method. The highest ionic conductivity obtained for MgTf-EC:DEC(1:1) liquid electrolytes was 2.66 x 10-3 S cm-1 and enhanced to 2.73 x 10-3 S cm-1 with the addition of cellulose acetate. These results were in agreement with the activation energy obtained with the lowest value of 0.11. The best explanation on the enhancement in ionic conductivity of PGE is due to the “breathing polymeric chain model”. The plots of conductivity-temperature shown to obey an Arrhenius rule. The electrical properties of the sample with the highest conductivity were analyzed using electrical permittivity-based frequency and temperature dependence in the range of 100 Hz - 1 MHz and 303-373K, respectively. The variation in dielectric permittivity (εr and εi) as a function of frequency at different temperatures exhibited decays at higher frequencies and a dispersive behavior at low frequencies. Based on the observed electrical properties, it can be inferred that this polymer gel electrolyte could be a promising candidate as an electrolyte in electrochemical devices.
  5. Hamidi, M., Mohamed, S.N., Mustapha, R.I.P.R., Hassan, O.H., Yahya, M.Z.A.
    MyJurnal
    In this study, Li1+xAlxTi2-x(PO4)3 (0.0 ≤ x ≤ 0.5) was prepared by acetic acid-assisted sol-gel method. The structural properties of NASICON phosphates material with chemical formula LiTi2(PO4)3 were observed using the Fourier transform infrared spectroscopy. NASICON is a family of crystalline phosphate with a general network system consisting of PO4 tetrahedra, thus bands were assigned by vibrations contributed by basic phosphates, in the wavenumber region between 1300 cm-1 and 600 cm-1. Experimental spectra indicated that all Li1+xAlxTi2-x(PO4)3 (0.0 ≤ x ≤ 0.5), heat treated at 600°C and 700°C for 3 hours in air, samples showed the presence of phosphate peaks with shift in frequency as Al3+ is substituted into the structure, and with increasing temperatures. Some bands broadened and overlapped causing it hard to analyze the arising bands. It however determined the existence of NASICON structure in all of the samples under study.
  6. Ayub, S.F., Nazir, K., Aziz, A.F., Ali, A.M.M., Saaid, S.I.Y., Yahya, M.Z.A.
    MyJurnal
    This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected. It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.
  7. Madihah Ahmad, Bohari M. Yamin, Azwan Mat Lazim
    MyJurnal
    α-Mangostin was extracted from the pericarp of the Malaysian local Garcinia mangostana linn., The structure was characterised by Infrared red, UV-Visible and Nuclear Magnetic Resonance spectroscopic data. The fluorescence peak at 500nm in ethanol was not observed in PNIPAM microgel solution. The increase of colloidal size of the gel in the presence of α-mangostin was studied by Dynamic Light Scattering and Transmission Electron Microscope. The size of the particle also increases with increasing temperature up to 45⁰C after which it began to shrink. The TEM micrograph at 45°C showed a uniformly structured pattern of the gel occurs in the range of the lowest solution critical temperature.
  8. Muhd Norhasri Mohd Sidek, Mohd Fadzil Arshad, Megat Azmi Megat Johari, Zaid Mohd Yazid, Amir Khomeiny, R.
    MyJurnal
    Metakaolin is a manufactured pozzolan produced by thermal processing of purified kaolinitic clay using electrical furnace. This study has examined the effect of Metakaolin on the properties of cement and concrete at a replacement level of 0%, 5%, 10% and 15%. The parameters studied were divided into two groups which are chemical compositions, water requirement, setting time and soundness test were carried out for cementitous properties. Workability, compressive strength and bending strength were test for concrete properties. Hardened concrete was cured under different type of curing conditions and tested.. The result showed that the inclusions of Metakaolin as cement replacement minerals have change some of the cementitous and concrete properties. This research reveals, the optimum effect for cementitous and concrete properties for metakaolin was 10%.
  9. Shahril Anuar Bahari, Kamrie Kamlon, Masitah Abu Kassim
    MyJurnal
    In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
  10. Mohd Helmy Ibrahim, Mohd Nazip Suratman, Razali Abd Kader
    MyJurnal
    Trees planted from agroforestry practices can become valuable resources in meeting the wood requirements of many nations. Gliricidia sepium is an exotic species introduced to the agricultural sector in Malaysia mainly for providing shade for cocoa and coffee plantations. This study investigates its wood physical properties (specific gravity and moisture content) and fibre morphology (length, lumen diameter and cell wall thickness) of G.sepium at three intervals according to age groups (three, five and seven years of ages). Specific gravity (0.72) was significantly higher at seven years of age as compared to five (0.41) and three (0.35) years age group with a mean of 0.43 (p0.05). Mean moisture content was 58.3 % with no significant difference existing between the tree age groups. fibre diameter (22.4 m) was significantly lower (p0.05) for the trees which were three years of age when compared to five and seven years age groups (26.6 m and 24.7 m), respectively. Means of fibre length, lumen diameter and cell wall thickness was 0.83 m, 18.3 m, and 6.2 m, respectively, with no significant differences detected between trees in all age groups in this study. Further calculation on the coefficient of suppleness and runkel ratio suggest that wood from G. sepium may have the potential for insulation board manufacture and paper making. However, future studies should experiment the utilization of this species for these products to determine its full potential.
  11. Normah Ismail, Nurulain Abd Razak
    MyJurnal
    Protease was extracted from two maturity stages of noni fruits (Morinda citrifolia L.), unripe (stage 1) and ripe (stage 5). The crude extract was partially purified by acetone precipitation method followed by dialysis, gel filtration chromatography and freeze drying. Protein concentrations, proteolytic activity, molecular weight distribution, pH stability, temperature stability and storage efficiency of the resulting protease were evaluated. The unripe and ripe noni fruit contains 0.65 and 0.35% protein, respectively. Molecular weight of the proteases from both stages ranged approximately between 3 to 28 kDa based on the SDS-PAGE results. The optimum activity were at pH 7s and 6, temperatures of 40 and 50°C, respectively for proteases obtained from the unripe and ripe fruit. Analysis from the freeze dried protease indicated that protease from ripe noni fruits had higher protein concentration and specific activity compared to those from unripe fruit. However, it is more sensitive to pH and temperature and less stable during storage as it shows lower proteolytic activity compared to protease from unripe fruit. Based on its high proteolytic activity reaching up to 70.31 U/mg and storage stability (30% lost of activity), noni fruit could be an alternative source of plant protease.
  12. Chieng, Buong Woei, Nor Azowa Ibrahim, Wan Md Zin Wan Yunus, Mohd Zobir Hussein
    MyJurnal
    Poly(lactic acid) (PLA)-based nanocomposites filled with graphene nanoplatelets (xGnP) that contains epoxidized palm oil (EPO) as plasticizer were prepared by melt blending method. PLA was first plasticized by EPO to improve its flexibility and thereby overcome its problem of brittleness. Then, xGnP was incoporated into plasticized PLA to enhance its mechanical properties. Plasticized and nanofilled PLA nanocomposites (PLA/EPO/xGnP) showed improvement in the elongation at break by 3322% and 61% compared to pristine PLA and PLA/EPO, respectively. The use of EPO and xGnP increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The nanocomposites also resulted in an increase of up to 26.5% in the tensile strength compared with PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO/xGnP nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. Plasticized PLA reinforced with xGnP showed that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there was a significant decrease of glass transition temperature up to 0.3wt% of xGnP incorporation. The TEM micrograph of PLA/EPO/xGnP shows that the xGnP was uniformly dispersed in the PLA matrix and no obvious aggregation was observed.
  13. Then, Yoon Yee, NorAzowa Ibrahim, Norhazlin Zainuddin, Hidayah Ariffin, Wan MdZin Wan Yunus
    MyJurnal
    Natural fiber is incompatible with hydrophobic polymer due to its hydrophilic nature. Therefore, surface modification of fiber is needed to impart compatibility. In this work,superheated steam (SHS)-alkali was introduced as novel surface treatment method to modify oil palm mesocarp fiber (OPMF) for fabrication of biocomposites. The OPMF was first pre-treated with SHS and subsequently treated with varying NaOH concentration (1, 2, 3, 4 and 5%) and soaking time (1, 2, 3 and 4h) at room temperature. The biocomposites were then fabricated by melt blending of 70 wt% SHS-alkali treated-OPMFs and 30 wt% poly(butylene succinate) in a Brabender internal mixer followed by hot-pressed moulding. The combination treatment resulted in fiber with rough surface as well as led to the exposure ofmicrofibers. The tensile test result showed that fiber treated at 2% NaOH solution and 3h soaking time produced biocomposite with highest improvement in tensile strength (69%) and elongation at break (36%) in comparison to that of untreated OPMF. The scanning electron micrographs of tensile fracture surfaces of biocomposite provide evident for improved adhesion between fiber and polymer after thetreatments.This work demonstrated that combination treatments of SHS and NaOH could be a promising way to modify OPMF for fabrication of biocomposite.
  14. Siti Kamilah Che Soh, Siti Aminah Jusoh, Mustaffa Shamsuddin
    MyJurnal
    A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
  15. Asra Hosseini
    MyJurnal
    From earliest cities to the present, spatial division into residential zones and neighbourhoods is the universal feature of urban areas. This study explored issue of measuring neighbourhoods through spatial autocorrelation method based on Moran’s I index in respect of achieving to best neighbourhoods’ model for forming cities smarter. The research carried out by selection of 35 neighbourhoods only within central part of traditional city of Kerman in Iran. The results illustrate, 75% of neighbourhoods’ area in the inner city of Kerman had clustered pattern, and it shows reduction in Moran’s index is associated with disproportional distribution of density and increasing in Moran’s I and Z-score have monotonic relation with more dense areas and clustered pattern. It may be more efficient for urban planner to focus on spatial autocorrelation to foster neighbourhood cohesion rather than emphasis on suburban area. It is recommended characteristics of historic neighbourhoods can be successfully linked to redevelopment plans toward making city smarter, and also people’s quality of life can be related to the way that neighbourhoods’ patterns are defined.
  16. Farzana Kabir Ahmad, Siti Sakira Kamaruddin
    Scientific Research Journal, 2015;12(1):1-10.
    MyJurnal
    The invention of microarray technology has enabled expression levels of thousands of genes to be monitored at once. This modernized approach has created large amount of data to be examined. Recently, gene regulatory network has been an interesting topic and generated impressive research goals in computational biology. Better understanding of the genetic regulatory processes would bring significant implications in the biomedical fields and many other pharmaceutical industries. As a result, various mathematical and computational methods have been used to model gene regulatory network from microarray data. Amongst those methods, the Bayesian network model attracts the most attention and has become the prominent technique since it can capture nonlinear and stochastic relationships between variables. However, structure learning of this model is NP-hard and computationally complex as the number of potential edges increase drastically with the number of genes. In addition, most of the studies only focused on the predicted results while neglecting the fact that microarray data is a fragmented information on the whole biological process. Hence this study proposed a network-based inference model that combined biological knowledge in order to verify the constructed gene regulatory relationships. The gene regulatory network is constructed using Bayesian network based on low-order conditional independence approach. This technique aims to identify from the data the dependencies to construct the network structure, while addressing the structure learning problem. In addition, three main toolkits such as Ensembl, TFSearch and TRANSFAC have been used to determine the false positive edges and verify reliability of regulatory relationships. The experimental results show that by integrating biological knowledge it could enhance the precision results and reduce the number of false positive edges in the trained gene regulatory network.
  17. Normah, Ismail, Ezzana Zuraini, Zainuddin
    Scientific Research Journal, 2015;12(1):1-12.
    MyJurnal
    Proteases were extracted from starfruit at maturity Index 2 (unripe, light green) and Index 7 (very ripe, orange) and partially purified using acetone and 40% ammonium sulfate precipitations. Higher yield and proteolytic activity were observed for proteases purified using acetone than 40% ammonium sulfate. As for maturity index, yield and protein concentration of proteases from Index 2 were higher than those from Index 7. SDS-PAGE result showed intense bands for acetone proteases while a distinct band at 50 kDa was observed in all the proteases. Enzyme activity decreased during the seven days storage at 4°C with minimum relative activity of 70% achieved for acetone proteases at day seven. This study suggested that acetone precipitation is more effective method for purifying starfruit protease based on the yield and proteolytic activity compared to using 40% ammonium sulphate precipitation. In order to obtain higher protein concentration and proteolytic activity, starfruit at the unripe stage, Index 2 is a better raw material than Index 7 to be used for protease production.
  18. Alhassan Salami Tijani, Nazri Mohammed, Werner Witt
    MyJurnal
    Industrial heat pumps are heat-recovery systems that allow the temperature of waste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses of integrating backpressure turbine of a power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency of the primary fuel is calculated for different operating range of the heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperature difference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.
  19. Mohd Abdul Fatah Abdul Manan, M. Ibrahim M. Tahir, Crouse, Karen A., How, Fiona N.-F., Watkin, David J.
    MyJurnal
    The crystal structure of the title compound has been determined. The compound crystallized in the triclinic space group P -1, Z = 2, V = 1839.42(18) Å3 and unit cell parameters a = 11.0460(6) Å, b = 13.3180(7) Å, c = 13.7321(8) Å, a = 80.659(3)°, ß = 69.800(3)° and ? = 77.007(2)° with one disordered dimethylsulfoxide solvent molecule with the sulfur and oxygen atoms are distributed over two sites; S101/S102 [site occupancy factors: 0.6035/0.3965] and O130/O131 [site occupancy factor 0.3965/0.6035]. The C22-S21 and C19-S20 bond distances of 1.779(7) Å and 1.788(8) Å indicate that both of the molecules are connected by the disulfide bond [S20-S21 2.055(2) Å] in its thiol form. The crystal structure reveals that both of the 5-bromoisatin moieties are trans with respect to the [S21-S20 and C19-N18] and [S20-S21 and C22-N23] bonds whereas the benzyl group from the dithiocarbazate are in the cis configuration with respect to [S21-S20 and C19-S44] and [S20-S21 and C22-S36] bonds. The crystal structure is further stabilized by intermolecular hydrogen bonds of N9-H35···O16 formed between the two molecules and N28-H281···O130, N28-H281···O131 and C41-H411···O131 with the solvent molecule.
  20. Muhamad Hafizuddin Mohamad Basir, Bulan Abdullah, Siti Khadijah Alias
    MyJurnal
    This research investigates and analyzes wear properties of 316 stainless steel before and after applying paste boronizing process and to investigate the effect of shot blasting process in enhancing boron dispersion into the steel. In order to enhance the boron dispersion into 316 stainless steel, surface deformation method by shot blasting process was deployed. Boronizing treatment was conducted using paste medium for 8 hours under two different temperatures which were 8500 C and 9500 C. Wear behaviour was evaluated using pin-on-disc test for abrasion properties. The analysis on microstructure, X-ray Diffraction (XRD) and density were also carried out before and after applying boronizing treatment. Boronizing process that had been carried out on 316 stainless steel increases the wear resistance of the steel compared to the unboronized 316 stainless steel. The effect of boronizing treatment together with the shot blasting process give a greater impact in increasing the wear resistance of 316 stainless steel. This is mainly because shot blasted samples initiated surface deformation that helped more boron dispersion due to dislocation of atom on the deformed surface. Increasing the boronizing temperature also increases the wear resistance of 316 stainless steel. In industrial application, the usage of the components that have been fabricated using the improved 316 stainless steel can be maximized because repair and replacement of the components can be reduced as a result of improved wear resistance of the 316 stainless steel.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links