Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Cheah YT, Lakbir Singh HKK, Chan DJC
    Water Environ Res, 2021 Jan 23.
    PMID: 33484623 DOI: 10.1002/wer.1515
    Membrane distillation (MD) frequently deals with membrane biofouling caused by deposition of algal organic matter (AOM) from algal blooms, hampering the treatment efficiency. In this study, AOMs, which are soluble extracellular polymeric substance (sEPS), bounded EPS (bEPS), and internal organic matter (IOM) from three benthic species (Amphora coffeaeformis, Cylindrotheca fusiformis, and Navicula incerta) were exposed to a temperature range to resemble the MD process. Results showed that EPS had higher polysaccharide fraction than protein with 85.71%, 68.26%, and 71.91% for A. coffeaeformis, N. incerta, and C. fusiformis, respectively. Both the EPS polysaccharide and protein concentration linearly increase with temperature, but the opposite was true for IOM and high-molecular-weight (HMW) polysaccharide. At 80°C, 5812.94 μg/g out of 6304.28 μg/g polysaccharide in A. coffeaeformis was of low molecular weight (LMW); hence, these findings suggested that they were the major foulants to clog the narrow pores within virgin hydrophobic membrane, forming a conditioning layer followed by deposition of HMW and hydrophilic polysaccharides onto the macropores to cause irreversible fouling. Cell lysis occurring at higher temperature increases the total protein content about 25% within the EPS matrix, inducing membrane plugging via hydrophobic-hydrophobic interactions. Overall, the AOM composition at different temperatures will likely dictate the fouling severity in MD. PRACTITIONER POINTS: EPS production of three benthic diatoms was the highest at 80°C. EPS from diatoms consists of at least 75.29% of polysaccharides. Small molecular weight carbohydrates (<12 kDa) were potential foulants. Proteins of internal organic matter (>56%) give irreversible attachment towards membranes. A. coffeaeformis was considered as the most fouling diatoms with highest EPS amount of 6304.28 μg/g.
  2. Hui YW, Narayanan K, Dykes GA
    Water Environ Res, 2016 Nov 01;88(11):2040-2046.
    PMID: 26704787 DOI: 10.2175/106143016X14504669767292
      The effect of physical shearing on the attachment of six Pseudomonas aeruginosa strains and six Burkholderia cepacia strains to glass, stainless steel, polystyrene and Teflon® was determined. A significant (p < 0.05) decrease in hydrophobicity was apparent for all P. aeruginosa strains (17-36%) and B. cepacia, MS 5 (20%) after shearing. A significant (p < 0.05) decrease in attachment of some P. aeruginosa (0.2-0.5 log CFU/cm2) and B. cepacia (0.2-0.4 log CFU/cm2) strains to some surface types was apparent after shearing. Significant (p < 0.05) correlation was observed for both numbers of flagellated cells and hydrophobicity against attachment to glass, stainless steel and polystyrene for P. aeruginosa while only hydrophobicity showed significant correlation against the same surfaces for B. cepacia. Scanning electron microscopy and protein analysis showed that shearing removed surface proteins from the cells and may have led to the observed changes in hydrophobicity and attachment to abiotic surfaces.
  3. Murali V, Ong SA, Ho LN, Wong YS, Hamidin N
    Water Environ Res, 2013 Mar;85(3):270-7.
    PMID: 23581242
    Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brilliant red X-3B, amaranth, reactive blue 221, and acid orange 7 in MFCs are summarized. Further exploration and operational modification are suggested to address the challenges of complete removal of azo dye with maximum power generation in an MFC. In addition, a sequential treatment system with MFCs is suggested for complete mineralization of azo dye.
  4. Zakaria SNF, Abdul Aziz H, Mohamad M
    Water Environ Res, 2022 Jul 15;94(8):e10770.
    PMID: 35915388 DOI: 10.1002/wer.10770
    Landfill leachate is well known as a hazardous byproduct from dumpling sites that has a negative impact on the environment and human life. Therefore, an effective treatment is imperative to overcome this issue. This research study investigates the effectiveness of zirconium tetrachloride (ZrCl4 ) and tin tetrachloride (SnCl4 ) as a coagulant in leachate treatment. Two parameters selected as a performance indicator in this study are color and chemical oxygen demand (COD). The data obtained showed that SnCl4 performed well as a coagulant with removal percentages of color and COD, which are 97% and 77%, respectively. Furthermore, the potential of integrated treatment using ozonation (O3 ) and the coagulation-flocculation process was also investigated. Four sequences of integrated treatment setup for this study were ozonation followed by jar test (ZrCl4 as a coagulant), ozonation followed by jar test (SnCl4 as a coagulant), jar test (ZrCl4 as a coagulant) followed by the ozonation process, and jar test (SnCl4 as a coagulant) followed by the ozonation process. The experimental data showed that the combination treatment of SnCl4 as a coagulant (jar test) followed by the ozonation process had recorded the highest removal of color (97.1%) and COD (88%) compared to other sequences. Moreover, the biodegradability ratio of this sequence also improved from 0.03 to 0.28, compared with other methods. Comparatively, integrated treatment is more effective in treating stabilized landfill leachate compared to the coagulation flocculation process alone. PRACTITIONER POINTS: Stabilized landfill leachate is difficult to be treated by natural coagulants or biological process. SnCl4 performed well as a coagulant in removing COD and colour from landfill leachate compared to ZrCl4 . However, too much usage of SnCl4 potentially generate secondary pollutant. Therefore, combination with O3 as pre-treatment is investigated. Combination treatment of SnCl4 ( as coagulant) with O3 had recorded the highest removal of colour (97.1%) and COD (88%). The biodegradability ratio of this sequence also improved from 0.03 to 0.28.
  5. Hamid MAA, Aziz HA, Yusoff MS, Rezan SA
    Water Environ Res, 2021 Apr;93(4):596-607.
    PMID: 32991022 DOI: 10.1002/wer.1461
    The high-strength leachate produced from sanitary landfill is a serious issue around the world as it poses adverse effects on aquatic life and human health. Physio-chemical technology is one of the promising options as the leachate normally presents in stabilized form and not fully amendable by biological treatment. In this research, the effectiveness of natural zeolite (clinoptilolite) augmented electrocoagulation process (hybrid system) for removing high-strength ammonia (3,442 mg/L) and color (8,427 Pt-Co) from naturally saline (15 ppt) local landfill leachate was investigated. A batch mode laboratory-scale reactor with parallel-monopolar aluminum electrodes attached to a direct current (DC) electric power was used as an electrocoagulation reactor for performance enhancement purpose. Optimum operational conditions of 146 g/L zeolite dosage, 600 A/m2 current density, 60 min treatment time, 200 rpm stirring speed, 35 min settling duration, and pH 9 were recorded with up to 70% and 88% removals of ammonia and color, respectively. The estimated overall operational cost was 26.22 $/m3 . The biodegradability of the leachate had improved from 0.05 to 0.27 in all post-treatment processes. The findings revealed the ability of the hybrid process as a viable option in eliminating concentrated ammonia and color in natural saline landfill leachate. PRACTITIONER POINTS: Clinoptilolite was augmented on the electrocoagulation process in saline and stabilized landfill leachate (15 ppt). The high strength NH3 -N (3,442 mg/L) and color (8,427 Pt-Co) were 70% and 88% removed, respectively. The optimum conditions occurred at 140 g/L zeolite, 60 mA/cm2 current density, 60 min, and final pH of 8.20. The biodegradability of the leachate improved from 0.05 to 0.27 after the treatment. This hybrid treatment was simple, faster, and did not require auxiliary electrolyte.
  6. Hung YT, Aziz HA, Ramli SF, Paul HH, Huhnke CR, Adesanmi BM
    Water Environ Res, 2020 Oct;92(10):1504-1509.
    PMID: 32659868 DOI: 10.1002/wer.1399
    This paper reviews the related literature reported in 2019 about various types of wastewaters associated with chemical and allied products. The subjects comprise wastewaters produced from various activities in agricultural, chemical, dye, petrochemical, and pharmaceutical. PRACTITIONER POINTS: Bioflocculant chitosan was used for sludge dewatering and the treatment of water and wastewater, and polishing of sanitary landfill leachate. Alkaline lignin-based flocculants were used to achieve excellent color removal for paper mill sludge. Powdered activated coke was used to remove COD (chemical oxygen demand) from chemical industry wastewater effluents.
  7. Gazzaz NM, Yusoff MK, Ramli MF, Juahir H, Aris AZ
    Water Environ Res, 2015 Feb;87(2):99-112.
    PMID: 25790513
    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
  8. Ong YH, Chua AS, Lee BP, Ngoh GC, Hashim MA
    Water Environ Res, 2012 Jan;84(1):3-8.
    PMID: 22368821
    A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.
  9. Singh J, Kumar V, Kumar P, Kumar P, Yadav KK, Cabral-Pinto MMS, et al.
    Water Environ Res, 2021 Sep;93(9):1543-1553.
    PMID: 33565675 DOI: 10.1002/wer.1536
    The present study describes the phytoremediation performance of water lettuce (Pistia stratiotes L.) for physicochemical pollutants elimination from paper mill effluent (PME). For this, pot (glass aquarium) experiments were conducted using 0% (BWW: borewell water), 25%, 50%, 75%, and 100% treatments of PME under natural day/light regime. Results of the experiments showed that the highest removal of pH (10.75%), electrical conductivity (EC: 63.82%), total dissolved solids (TDS: 71.20%) biological oxygen demand (BOD: 85.03%), chemical oxygen demand (COD: 80.46%), total Kjeldahl's nitrogen (TKN: 93.03%), phosphorus (P: 85.56%), sodium (Na: 91.89%), potassium (K: 84.04%), calcium (Ca: 84.75%), and magnesium (Mg: 83.62%), most probable number (MPN: 77.63%), and standard plate count (SPC: 74.43%) was noted in 75% treatment of PME after treatment by P. stratiotes. PCA showed the best vector length for TKN, Na, and Ca. The maximum plant growth parameters including, total fresh biomass (81.30 ± 0.28 g), chlorophyll content (3.67 ± 0.05 mg g-1  f.wt), and relative growth rate (0.0051 gg-1  d-1 ) was also measured in 75% PME treatment after phytoremediation experiments. The findings of this study make useful insight into the biological management of PME through plant-based pollutant eradication while leftover biomass may be used as a feedstock for low-cost bioenergy production. PRACTITIONER POINTS: Biological treatment of paper mill effluent using water lettuce is presented. Best reduction of physicochemical and microbiological pollutants was attained in 75% treatment. Maximum production of chlorophyll, plant biomass, and highest growth rate was also observed in 75% treatment.
  10. Su-Huan K, Fahmi MR, Abidin CZA, Soon-An O
    Water Environ Res, 2016 Nov 01;88(11):2047-2058.
    PMID: 28661323 DOI: 10.2175/106143016X14733681695285
      Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links