Displaying publications 21 - 40 of 160 in total

Abstract:
Sort:
  1. Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA
    Water Sci Technol, 2019 Aug;80(3):458-465.
    PMID: 31596257 DOI: 10.2166/wst.2019.289
    In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.
  2. Al-Amri A, Salim MR, Aris A
    Water Sci Technol, 2011;64(7):1398-405.
    PMID: 22179635 DOI: 10.2166/wst.2011.421
    A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3.
  3. Lim AP, Zulkeflee Z, Aris AZ
    Water Sci Technol, 2016 Oct;74(7):1577-1584.
    PMID: 27763337
    Dead calcareous skeletons (CSs) as low-cost adsorbents were studied to remove lead ions (Pb (II)) in an aqueous solution. Factors influencing the efficiency of CSs were evaluated by adsorbent size, contact time, initial concentration, dosage concentration and pH. The optimum CS size for removal of Pb (II) was 710 μm at an equilibrium time of 720 min. The best dosage of CS was 10 g/L for a 99% removal efficiency without pH adjustment. Pb (II) ions were effectively removed in the initial pH of the metal solution. CS was able to remove a high concentration (100 mg/L) of Pb (II) at a removal efficiency of 99.92% and at an adsorption capacity of 13.06 mg/g. Our results demonstrated the potential of CS as a metal adsorbent in the aqueous phase with a high-removal efficiency and distinct physical characteristics.
  4. Alhamami AH, Falude E, Ibrahim AO, Dodo YA, Daniel OL, Atamurotov F
    Water Sci Technol, 2024 Apr;89(8):2149-2163.
    PMID: 38678415 DOI: 10.2166/wst.2024.092
    This study employs diverse machine learning models, including classic artificial neural network (ANN), hybrid ANN models, and the imperialist competitive algorithm and emotional artificial neural network (EANN), to predict crucial parameters such as fresh water production and vapor temperatures. Evaluation metrics reveal the integrated ANN-ICA model outperforms the classic ANN, achieving a remarkable 20% reduction in mean squared error (MSE). The emotional artificial neural network (EANN) demonstrates superior accuracy, attaining an impressive 99% coefficient of determination (R2) in predicting freshwater production and vapor temperatures. The comprehensive comparative analysis extends to environmental assessments, displaying the solar desalination system's compatibility with renewable energy sources. Results highlight the potential for the proposed system to conserve water resources and reduce environmental impact, with a substantial decrease in total dissolved solids (TDS) from over 6,000 ppm to below 50 ppm. The findings underscore the efficacy of machine learning models in optimizing solar-driven desalination systems, providing valuable insights into their capabilities for addressing water scarcity challenges and contributing to the global shift toward sustainable and environmentally friendly water production methods.
  5. Noor MJ, Muyibi SA, Ahmed T, Ghazall AH, Jusoh A, Idris A, et al.
    Water Sci Technol, 2002;46(9):331-8.
    PMID: 12448486
    A laboratory study was conducted on an Extended Aeration-Microfiltration (EAM) reactor in treating a food industry wastewater. The reactor contained horizontally laid hollow fibre microfiltration (MF) units that were fully submerged. The MF units were connected to a peristaltic pump that was used to extract permeate continuously under suction pressure. Continuous aeration from beneath the modules provided the crossflow effect to the MF units. Active activated sludge was used in the start-up where the sludge was mixed together with the feed water at a Food/Microorganisms (F/M) value of about 0.1. Primary effluent with Chemical Oxygen Demand (COD) values ranged between 1,500 and 3,000 mg/l was used as feed water. The EAM reactor was operated for nearly three months without initiating cleaning of the MF units. A suction pressure of 0.9 bar and Mixed Liquor Suspended Solids (MLSS) of over 5,500 mg/l were reached when nearing the end of the three month operation period. Permeate COD and turbidity reduction of over 97% and 99% respectively, were achieved. Prior to this, the MF module arrangements were studied; where vertically arranged modules were found to perform poorly as compared to the horizontally laid modules, in terms of clean water permeate flux.
  6. Hamiruddin NA, Awang NA, Mohd Shahpudin SN, Zaidi NS, Said MAM, Chaplot B, et al.
    Water Sci Technol, 2021 Nov;84(9):2113-2130.
    PMID: 34810301 DOI: 10.2166/wst.2021.415
    Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategies for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.
  7. Ismail R, Kassim MA, Inman M, Baharim NH, Azman S
    Water Sci Technol, 2002;46(9):179-83.
    PMID: 12448467
    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.
  8. Idris A, Yen OB, Hamid MH, Baki AM
    Water Sci Technol, 2002;46(9):279-86.
    PMID: 12448479
    A sludge lagoon has been adopted as a simple and cost effective method for dewatering of sludge. The processes occurring in a sludge lagoon include thickening, dewatering, storage and stabilization; all happening simultaneously. The objective of this study is to determine the dewatering and drying rates at pilot-scale which occur in a lagoon having different design configurations. Two types of sludge lagoons with different initial sludge depth (0.75 m and 0.375 m) were investigated to measure the drying behavior and drying efficiency. The first design is a sludge lagoon with a clay bottom where the dewatering mechanisms are decanting supernatant and evaporation. The second design is a sludge lagoon installed with a sand and underdrains system, where the dewatering mechanisms are filtration or draining and evaporation. Sludge drying kinetic models with high fitness were plotted to describe the sludge drying behavior. Drying of sludge in a sludge lagoon with a clay bottom can best be described by an exponential function. Whereas, drying of sludge in a sludge lagoon with sand and underdrains system followed a logarithmic function. A lagoon designed with sand and underdrains system and having shallower sludge depth was the most efficient. The reduction in volatile solids was lower than 4% during the study period. The drying process proceeded with an increase in dryness and decline in pH value.
  9. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK
    Water Sci Technol, 2012;65(9):1632-8.
    PMID: 22508126 DOI: 10.2166/wst.2012.057
    The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi(5)O(7)NO(3), synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi(5)O(7)NO(3). The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.
  10. Mak CY, Lin JG, Chen WH, Ng CA, Bashir MJK
    Water Sci Technol, 2019 May;79(10):1860-1867.
    PMID: 31294702 DOI: 10.2166/wst.2019.188
    The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4+-N and 96% NO2--N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.
  11. Ujang Z, Henze M, Curtis T, Schertenleib R, Beal LL
    Water Sci Technol, 2004;49(8):1-10.
    PMID: 15193088
    This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.
  12. Salele B, Dodo YA, Sani DA, Abuhussain MA, Sayfutdinovna Abdullaeva B, Brysiewicz A
    Water Sci Technol, 2023 Oct;88(7):1893-1909.
    PMID: 37831003 DOI: 10.2166/wst.2023.304
    Using the soil and water assessment tool (SWAT), runoff in pervious and impervious urban areas was simulated in this study. In the meantime, as a novel application of machine learning, the emotional artificial neural network (EANN) model was employed to enhance the SWAT obtained for this study. As a result of the EANN model's capabilities in rainfall-runoff phenomena, the SWAT-EANN couple model has been used to assess urban flooding. The pervious, impervious, and water body areas of the study area were classified and mapped to estimate the cover change over three epochs. Land use map, precipitation data, temperature (minimum and maximum) data, wind speed, relative humidity, soil map, solar radiation, and digital elevation model were used as inputs for modelling rainfall-runoff of the study area in the ArcGIS environment. The accuracy assessment of this study was excellent (root-mean-square error 1 mm of precipitation). It also revealed that (a) a land use map illustrating changes in impervious, pervious surface, and water body for 1998, 2008, and 2018; (b) runoff modelling using a historical pattern of rainfall-runoff changes (1998-2018); and (c) descriptive statistical analysis of the runoff results of the research. This research will aid in urban planning, administration, and development. Specifically, it will prevent flooding and environmental problems.
  13. Ujang Z, Buckley C
    Water Sci Technol, 2002;46(9):1-9.
    PMID: 12448446
    This paper summarises the paper presentation sessions at the Conference, as well giving insights on the issues related to developing countries. It also discusses the present status of practice and research on water and wastewater management, and projected future scenario based not only on the papers presented in the Conference, but also on other sources. The strategy is presented to overcome many problems in developing countries such as rapid urbanization, industrialization, population growth, financial and institutional problems and, depleting water resources. The strategy consists of Integrated Urban Water Management (IUWM), cleaner industrial production, waste minimisation and financial arrangements.
  14. Leo CP, Chai WK, Mohammad AW, Qi Y, Hoedley AF, Chai SP
    Water Sci Technol, 2011;64(1):199-205.
    PMID: 22053475
    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus.
  15. Bong CH, Lau TL, Ab Ghani A, Chan NW
    Water Sci Technol, 2016 Oct;74(8):1876-1884.
    PMID: 27789888
    The understanding of how the sediment deposit thickness influences the incipient motion characteristic is still lacking in the literature. Hence, the current study aims to determine the effect of sediment deposition thickness on the critical velocity for incipient motion. An incipient motion experiment was conducted in a rigid boundary rectangular flume of 0.6 m width with varying sediment deposition thickness. Findings from the experiment revealed that the densimetric Froude number has a logarithmic relationship with both the thickness ratios ts/d and ts/y0 (ts: sediment deposit thickness; d: grain size; y0: normal flow depth). Multiple linear regression analysis was performed using the data from the current study to develop a new critical velocity equation by incorporating thickness ratios into the equation. The new equation can be used to predict critical velocity for incipient motion for both loose and rigid boundary conditions. The new critical velocity equation is an attempt toward unifying the equations for both rigid and loose boundary conditions.
  16. Obaid HA, Shahid S, Basim KN, Chelliapan S
    Water Sci Technol, 2015;72(6):1029-42.
    PMID: 26360765 DOI: 10.2166/wst.2015.297
    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.
  17. Nourouzi MM, Chuah TG, Choong TS
    Water Sci Technol, 2011;63(5):984-94.
    PMID: 21411950 DOI: 10.2166/wst.2011.280
    The removal of Reactive Black 5 dye in an aqueous solution by electrocoagulation (EC) as well as addition of flocculant was investigated. The effect of operational parameters, i.e. current density, treatment time, solution conductivity and polymer dosage, was investigated. Two models, namely the artificial neural network (ANN) and the response surface method (RSM), were used to model the effect of independent variables on percentage of dye removal. The findings of this work showed that current density, treatment time and dosage of polymer had the most significant effect on percentage of dye removal (p<0.001). In addition, interaction between time and current density, time and dosage of polymer, current density and dosage of polymer also significantly affected the percentage of dye removal (p=0.034, 0.003 and 0.024, respectively). It was shown that both the ANN and RSM models were able to predict well the experimental results (R(2)>0.8).
  18. How SW, Lim SY, Lim PB, Aris AM, Ngoh GC, Curtis TP, et al.
    Water Sci Technol, 2018 May;77(9-10):2274-2283.
    PMID: 29757179 DOI: 10.2166/wst.2018.143
    Intensive aeration for nitrification is a major energy consumer in sewage treatment plants (STPs). Low-dissolved-oxygen (low-DO) nitrification has the potential to lower the aeration demand. However, the applicability of low-DO nitrification in the tropical climate is not well-understood. In this study, the potential of low-DO nitrification in tropical setting was first examined using batch kinetic experiments. Subsequently, the performance of low-DO nitrification was investigated in a laboratory-scale sequential batch reactor (SBR) for 42 days using real tropical sewage. The batch kinetic experiments showed that the seed sludge has a relatively high oxygen affinity. Thus, the rate of nitrification was not significantly reduced at low DO concentrations (0.5 mg/L). During the operation of the low-DO nitrification SBR, 90% of NH4-N was removed. The active low-DO nitrification was mainly attributed to the limited biodegradable organics in the sewage. Fluorescence in-situ hybridisation and 16S rRNA amplicon sequencing revealed the nitrifiers were related to Nitrospira genus and Nitrosomonadaceae family. Phylogenetic analysis suggests 47% of the operational taxonomic units in Nitrospira genus are closely related to a comammox bacteria. This study has demonstrated active low-DO nitrification in tropical setting, which is a more sustainable process that could significantly reduce the energy footprint of STPs.
  19. How SW, Sin JH, Wong SYY, Lim PB, Mohd Aris A, Ngoh GC, et al.
    Water Sci Technol, 2020 Jan;81(1):71-80.
    PMID: 32293590 DOI: 10.2166/wst.2020.077
    Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3-40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15-60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.
  20. Yin CY, Aroua MK, Daud WM
    Water Sci Technol, 2007;56(9):95-101.
    PMID: 18025736
    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links