Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Gouwanda D, Senanayake SM
    J Biomech, 2011 Mar 15;44(5):972-8.
    PMID: 21306714 DOI: 10.1016/j.jbiomech.2010.12.013
    Injury to a lower limb may disrupt natural walking and cause asymmetrical gait, therefore assessing the gait asymmetry has become one of the important procedures in gait analysis. This paper proposes the use of wireless gyroscopes as a new instrument to determine gait asymmetry. It also introduces two novel approaches: normalized cross-correlations (Cc(norm)) and Normalized Symmetry Index (SI(norm)). Cc(norm) evaluates the waveform patterns generated by the lower limb in each gait cycle. SI(norm) provides indications on the timing and magnitude of the bilateral differences between the limbs while addressing the drawbacks of the conventional methods. One-way ANOVA test reveals that Cc(norm) can be considered as single value indicator that determines the gait asymmetry (p<0.01). The experiment results showed that SI(norm) in asymmetrical gait were different from normal gait. SI(norm) in asymmetrical gait were found to be approximately 20% greater than SI(norm) in normal gait during pre-swing and initial swing.
    Matched MeSH terms: Acceleration
  2. Ong SQ, Ahmad H, Mohd Ngesom AM
    Infect Dis Rep, 2021 Feb 05;13(1):148-160.
    PMID: 33562890 DOI: 10.3390/idr13010016
    We aim to investigate the effect of large-scale human movement restrictions during the COVID-19 lockdown on both the dengue transmission and vector occurrences. This study compared the weekly dengue incidences during the period of lockdown to the previous years (2015 to 2019) and a Seasonal Autoregressive Integrated Moving Average (SARIMA) model that expected no movement restrictions. We found that the trend of dengue incidence during the first two weeks (stage 1) of lockdown decreased significantly with the incidences lower than the lower confidence level (LCL) of SARIMA. By comparing the magnitude of the gradient of decrease, the trend is 319% steeper than the trend observed in previous years and 650% steeper than the simulated model, indicating that the control of population movement did reduce dengue transmission. However, starting from stage 2 of lockdown, the dengue incidences demonstrated an elevation and earlier rebound by four weeks and grew with an exponential pattern. We revealed that Aedes albopictus is the predominant species and demonstrated a strong correlation with the locally reported dengue incidences, and therefore we proposed the possible diffusive effect of the vector that led to a higher acceleration of incidence rate.
    Matched MeSH terms: Acceleration
  3. Shahrin AA, Ghani SHA, Norman NH
    Korean J Orthod, 2021 Mar 25;51(2):86-94.
    PMID: 33678624 DOI: 10.4041/kjod.2021.51.2.86
    Objective: This study aimed to investigate the effect of micro-osteoperforations (MOPs) on external apical root resorption (EARR) during the initial orthodontic alignment phase of maxillary anterior crowding.

    Methods: Thirty patients (25 females, 5 males; mean age, 22.66 ± 3.27 years) who presented with moderate crowding of the upper labial segment and underwent extraction-based fixed appliance treatment were recruited. They were randomly allocated to receive adjunctive therapy with MOPs (n = 15) or treatment with fixed appliances only (control group; n = 15). EARR was measured from long-cone periapical radiographs taken at the start and the sixth month of treatment. A correction factor for the enlargement difference was used to calculate EARR. Data were analyzed with descriptive statistics and repeated-measures analysis of variance.

    Results: The mean root lengths of 168 teeth were measured and showed no statistically significant difference (p > 0.05) after six months of fixed appliance treatment in the MOP (mean difference [MD] = 0.13 mm; 95% confidence interval [CI] = -0.10-0.35) and control group (MD = 0.14 mm; 95% CI = -0.10-0.37). Most of the roots in the MOP and control groups (42.86% and 52.38%, respectively) showed only mild resorption. Less than 8% of the roots in both groups (7.14% in the MOP group and 4.76% in the control group) showed moderate resorption.

    Conclusions: Acceleration of orthodontic tooth movement with adjunctive MOPs therapy during the alignment phase does not exacerbate EARR in patients with moderate crowding of the upper labial segment in comparison with controls.

    Matched MeSH terms: Acceleration
  4. Lombe D, Sullivan R, Caduff C, Ali Z, Bhoo-Pathy N, Cleary J, et al.
    Ecancermedicalscience, 2021;15:1202.
    PMID: 33889211 DOI: 10.3332/ecancer.2021.1202
    Introduction: Public health emergencies and crises such as the current COVID-19 pandemic can accelerate innovation and place renewed focus on the value of health interventions. Capturing important lessons learnt, both positive and negative, is vital. We aimed to document the perceived positive changes (silver linings) in cancer care that emerged during the COVID-19 pandemic and identify challenges that may limit their long-term adoption.

    Methods: This study employed a qualitative design. Semi-structured interviews (n = 20) were conducted with key opinion leaders from 14 countries. The participants were predominantly members of the International COVID-19 and Cancer Taskforce, who convened in March 2020 to address delivery of cancer care in the context of the pandemic. The Framework Method was employed to analyse the positive changes of the pandemic with corresponding challenges to their maintenance post-pandemic.

    Results: Ten themes of positive changes were identified which included: value in cancer care, digital communication, convenience, inclusivity and cooperation, decentralisation of cancer care, acceleration of policy change, human interactions, hygiene practices, health awareness and promotion and systems improvement. Impediments to the scale-up of these positive changes included resource disparities and variation in legal frameworks across regions. Barriers were largely attributed to behaviours and attitudes of stakeholders.

    Conclusion: The COVID-19 pandemic has led to important value-based innovations and changes for better cancer care across different health systems. The challenges to maintaining/implementing these changes vary by setting. Efforts are needed to implement improved elements of care that evolved during the pandemic.

    Matched MeSH terms: Acceleration
  5. Byrnes G, Libby T, Lim NT, Spence AJ
    J Exp Biol, 2011 Aug 15;214(Pt 16):2690-6.
    PMID: 21795564 DOI: 10.1242/jeb.052993
    Gliding is thought to be an economical form of locomotion. However, few data on the climbing and gliding of free-ranging gliding mammals are available. This study employed an animal-borne three-dimensional acceleration data-logging system to collect continuous data on the climbing and gliding of free-ranging Malayan colugos, Galeopterus variegatus. We combined these movement data with empirical estimates of the metabolic costs to move horizontally or vertically to test this long-standing hypothesis by determining whether the metabolic cost to climb to sufficient height to glide a given distance was less than the cost to move an equivalent distance horizontally through the canopy. On average, colugos climb a short distance to initiate glides. However, due to the high energetic cost of climbing, gliding is more energetically costly to move a given horizontal distance than would be predicted for an animal travelling the same distance through the canopy. Furthermore, because colugos spend a small fraction of their time engaged in locomotor activity, the high costs have little effect on their overall energy budget. As a result, the energetic economy hypothesis for the origins of gliding is not supported. It is likely that other ecologically relevant factors have played a greater role in the origins of gliding in colugos and other mammals.
    Matched MeSH terms: Acceleration
  6. Khoo HL, Ahmed M
    Accid Anal Prev, 2018 Apr;113:106-116.
    PMID: 29407657 DOI: 10.1016/j.aap.2018.01.025
    This study had developed a passenger safety perception model specifically for buses taking into consideration the various factors, namely driver characteristics, environmental conditions, and bus characteristics using Bayesian Network. The behaviour of bus driver is observed through the bus motion profile, measured in longitudinal, lateral, and vertical accelerations. The road geometry is recorded using GPS and is computed with the aid of the Google map while the perceived bus safety is rated by the passengers in the bus in real time. A total of 13 variables were derived and used in the model development. The developed Bayesian Network model shows that the type of bus and the experience of the driver on the investigated route could have an influence on passenger's perception of their safety on buses. Road geometry is an indirect influencing factor through the driver's behavior. The findings of this model are useful for the authorities to structure an effective strategy to improve the level of perceived bus safety. A high level of bus safety will definitely boost passenger usage confidence which will subsequently increase ridership.
    Matched MeSH terms: Acceleration
  7. Sharizli AA, Rahizar R, Karim MR, Saifizul AA
    Traffic Inj Prev, 2015;16(2):190-5.
    PMID: 24827899 DOI: 10.1080/15389588.2014.921913
    The increase in the number of fatalities caused by road accidents involving heavy vehicles every year has raised the level of concern and awareness on road safety in developing countries like Malaysia. Changes in the vehicle dynamic characteristics such as gross vehicle weight, travel speed, and vehicle classification will affect a heavy vehicle's braking performance and its ability to stop safely in emergency situations. As such, the aim of this study is to establish a more realistic new distance-based safety indicator called the minimum safe distance gap (MSDG), which incorporates vehicle classification (VC), speed, and gross vehicle weight (GVW).
    Matched MeSH terms: Acceleration
  8. Haulisah NA, Hassan L, Bejo SK, Jajere SM, Ahmad NI
    Front Vet Sci, 2021;8:652351.
    PMID: 33869326 DOI: 10.3389/fvets.2021.652351
    Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77-93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68-82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95-100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80-100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.
    Matched MeSH terms: Acceleration
  9. Reza SM, Ahmad N, Choudhury IA, Ghazilla RA
    Sensors (Basel), 2014 Mar 04;14(3):4342-63.
    PMID: 24599193 DOI: 10.3390/s140304342
    Human motion is a daily and rhythmic activity. The exoskeleton concept is a very positive scientific approach for human rehabilitation in case of lower limb impairment. Although the exoskeleton shows potential, it is not yet applied extensively in clinical rehabilitation. In this research, a fuzzy based control algorithm is proposed for lower limb exoskeletons during sit-to-stand and stand-to-sit movements. Surface electromyograms (EMGs) are acquired from the vastus lateralis muscle using a wearable EMG sensor. The resultant acceleration angle along the z-axis is determined from a kinematics sensor. Twenty volunteers were chosen to perform the experiments. The whole experiment was accomplished in two phases. In the first phase, acceleration angles and EMG data were acquired from the volunteers during both sit-to-stand and stand-to-sit motions. During sit-to-stand movements, the average acceleration angle at activation was 11°-48° and the EMG varied from -0.19 mV to +0.19 mV. On the other hand, during stand-to-sit movements, the average acceleration angle was found to be 57.5°-108° at the activation point and the EMG varied from -0.32 mV to +0.32 mV. In the second phase, a fuzzy controller was designed from the experimental data. The controller was tested and validated with both offline and real time data using LabVIEW.
    Matched MeSH terms: Acceleration
  10. Aziz SA, Nuawi MZ, Nor MJ
    J Occup Health, 2015;57(6):513-20.
    PMID: 26269278 DOI: 10.1539/joh.14-0206-OA
    OBJECTIVE: The objective of this study was to present a new method for determination of hand-arm vibration (HAV) in Malaysian Army (MA) three-tonne truck steering wheels based on changes in vehicle speed using regression model and the statistical analysis method known as Integrated Kurtosis-Based Algorithm for Z-Notch Filter Technique Vibro (I-kaz Vibro).

    METHODOLOGY: The test was conducted for two different road conditions, tarmac and dirt roads. HAV exposure was measured using a Brüel & Kjær Type 3649 vibration analyzer, which is capable of recording HAV exposures from steering wheels. The data was analyzed using I-kaz Vibro to determine the HAV values in relation to varying speeds of a truck and to determine the degree of data scattering for HAV data signals.

    RESULTS: Based on the results obtained, HAV experienced by drivers can be determined using the daily vibration exposure A(8), I-kaz Vibro coefficient (Ƶ(v)(∞)), and the I-kaz Vibro display. The I-kaz Vibro displays also showed greater scatterings, indicating that the values of Ƶ(v)(∞) and A(8) were increasing. Prediction of HAV exposure was done using the developed regression model and graphical representations of Ƶ(v)(∞). The results of the regression model showed that Ƶ(v)(∞) increased when the vehicle speed and HAV exposure increased.

    DISCUSSION: For model validation, predicted and measured noise exposures were compared, and high coefficient of correlation (R(2)) values were obtained, indicating that good agreement was obtained between them. By using the developed regression model, we can easily predict HAV exposure from steering wheels for HAV exposure monitoring.

    Matched MeSH terms: Acceleration
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links