Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Yogarajah T, Bee YT, Noordin R, Yin KB
    Mol Med Rep, 2015 Jan;11(1):515-20.
    PMID: 25324014 DOI: 10.3892/mmr.2014.2686
    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.
    Matched MeSH terms: Adipokines/blood
  2. Lau CH, Muniandy S
    Ann. Hum. Genet., 2011 May;75(3):370-82.
    PMID: 21323646 DOI: 10.1111/j.1469-1809.2010.00635.x
    Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men.
    Matched MeSH terms: Adipokines/blood*
  3. Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH
    Biochimie, 2021 May;184:26-39.
    PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015
    Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
    Matched MeSH terms: Adipokines/metabolism*
  4. Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, et al.
    Pathol Oncol Res, 2021;27:1609828.
    PMID: 34588926 DOI: 10.3389/pore.2021.1609828
    A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
    Matched MeSH terms: Adipokines/metabolism*
  5. Lau CH, Muniandy S
    Genet Mol Biol, 2012 Jan;35(1):38-44.
    PMID: 22481872
    Epistasis (gene-gene interaction) is a ubiquitous component of the genetic architecture of complex traits such as susceptibility to common human diseases. Given the strong negative correlation between circulating adiponectin and resistin levels, the potential intermolecular epistatic interactions between ADIPOQ (SNP+45T > G, SNP+276G > T, SNP+639T > C and SNP+1212A > G) and RETN (SNP-420C > G and SNP+299G > A) gene polymorphisms in the genetic risk underlying type 2 diabetes (T2DM) and metabolic syndrome (MS) were assessed. The potential mutual influence of the ADIPOQ and RETN genes on their adipokine levels was also examined. The rare homozygous genotype (risk alleles) of SNP-420C > G at the RETN locus tended to be co-inherited together with the common homozygous genotypes (protective alleles) of SNP+639T > C and SNP+1212A > G at the ADIPOQ locus. Despite the close structural relationship between the ADIPOQ and RETN genes, there was no evidence of an intermolecular epistatic interaction between these genes. There was also no reciprocal effect of the ADIPOQ and RETN genes on their adipokine levels, i.e., ADIPOQ did not affect resistin levels nor did RETN affect adiponectin levels. The possible influence of the ADIPOQ gene on RETN expression warrants further investigation.
    Matched MeSH terms: Adipokines
  6. Parvaresh Rizi E, Teo Y, Leow MK, Venkataraman K, Khoo EY, Yeo CR, et al.
    J Clin Endocrinol Metab, 2015 11;100(11):4249-56.
    PMID: 26308293 DOI: 10.1210/jc.2015-2639
    CONTEXT: Among Asian ethnic groups, Chinese or Malays are more insulin sensitive than South Asians, in particular in lean individuals. We have further reported that body fat partitioning did not explain this ethnic difference in insulin sensitivity.

    OBJECTIVE: We examined whether adipocytokines might explain the ethnic differences in the relationship between obesity and insulin resistance among the three major ethnic groups in Singapore.

    DESIGN AND PARTICIPANTS: This was a cross-sectional study of 101 Chinese, 82 Malays, and 81 South Asian men. Insulin sensitivity index (ISI) was measured using hyperinsulinemic euglycemic clamp. Visceral (VAT) and subcutaneous adipose tissue (SAT) volumes were quantified using magnetic resonance imaging.

    MAIN OUTCOME MEASURES: Plasma total and high-molecular-weight adiponectin, leptin, visfatin, apelin, IL-6, fibroblast growth factor 21 (FGF21), retinol binding protein-4 (RBP 4), and resistin were measured using enzyme-linked immunoassays.

    RESULTS: Principle component (PC) analysis on the adipocytokines identified three PCs, which explained 49.5% of the total variance. Adiponectin loaded negatively, and leptin and FGF21 loaded positively onto PC1. Visfatin, resistin, and apelin all loaded positively onto PC2. IL-6 loaded positively and RBP-4 negatively onto PC3. Only PC1 was negatively associated with ISI in all ethnic groups. In the path analysis, SAT and VAT were negatively associated with ISI in Chinese and Malays without significant mediatory role of PC1. In South Asians, the relationship between VAT and ISI was mediated partly through PC1, whereas the relationship between SAT and ISI was mediated mainly through PC1.

    CONCLUSIONS: The relationships between abdominal obesity, adipocytokines and insulin sensitivity differ between ethnic groups. Adiponectin, leptin, and FGF21 play a mediating role in the relationship between abdominal adiposity and insulin resistance in South Asians, but not in Malays or Chinese.

    Matched MeSH terms: Adipokines/blood; Adipokines/physiology*
  7. Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A
    Mediators Inflamm, 2022;2022:2734321.
    PMID: 35177953 DOI: 10.1155/2022/2734321
    Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
    Matched MeSH terms: Adipokines
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links