Prosthetic suspension system is an important component of lower limb prostheses. Suspension efficiency can be best evaluated during one of the vital activities of daily living, i.e. walking. A new magnetic prosthetic suspension system has been developed, but its effects on gait biomechanics have not been studied. This study aimed to explore the effect of suspension type on kinetic and kinematic gait parameters during level walking with the new suspension system as well as two other commonly used systems (the Seal-In and pin/lock). Thirteen persons with transtibial amputation participated in this study. A Vicon motion system (six cameras, two force platforms) was utilized to obtain gait kinetic and kinematic variables, as well as pistoning within the prosthetic socket. The gait deviation index was also calculated based on the kinematic data. The findings indicated significant difference in the pistoning values among the three suspension systems. The Seal-In system resulted in the least pistoning compared with the other two systems. Several kinetic and kinematic variables were also affected by the suspension type. The ground reaction force data showed that lower load was applied to the limb joints with the magnetic suspension system compared with the pin/lock suspension. The gait deviation index showed significant deviation from the normal with all the systems, but the systems did not differ significantly. Main significant effects of the suspension type were seen in the GRF (vertical and fore-aft), knee and ankle angles. The new magnetic suspension system showed comparable effects in the remaining kinetic and kinematic gait parameters to the other studied systems. This study may have implications on the selection of suspension systems for transtibial prostheses. Trial registration: Iranian Registry of Clinical Trials IRCT2013061813706N1.
The effects of Seal-In X5 and Dermo liner (Össur) on suspension and patient's comfort in lower limb amputees are unclear. In this report, we consider the case of a 51-yr-old woman with bilateral transtibial amputation whose lower limbs were amputated because of peripheral vascular disease. The subject had bony and painful residual limbs, especially at the distal ends. Two prostheses that used Seal-In X5 liners and a pair of prostheses with Dermo liners were fabricated, and the subject wore each for a period of 2 wks. Once the 2 wks had passed, the pistoning within the socket was assessed and the patient was questioned as to her satisfaction with both liners. This study revealed that Seal-In X5 liner decreased the residual limb pain experienced by the patient and that 1-2 mm less pistoning occurred within the socket compared with the Dermo liner. However, the patient needed to put in extra effort for donning and doffing the prosthesis. Despite this, it is clear that the Seal-In X5 liner offers a viable alternative for individuals with transtibial amputations who do not have enough soft tissue around the bone, especially at the end of the residual limb.