Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Ooi MH, Ngu SJ, Chor YK, Li J, Landersdorfer CB, Nation RL
    Clin Infect Dis, 2019 11 13;69(11):1962-1968.
    PMID: 30722017 DOI: 10.1093/cid/ciz067
    BACKGROUND: Intravenous colistin is widely used to treat infections in pediatric patients. Unfortunately, there is a paucity of pharmacological information to guide the selection of dosage regimens. The daily dose recommended by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) is the same body weight-based dose traditionally used in adults. The aim was to increase our understanding of the patient factors that influence the plasma concentration of colistin, and assess the likely appropriateness of the FDA and EMA dosage recommendations.

    METHODS: There were 5 patients, with a median age of 1.75 (range 0.1-6.25) years, a median weight of 10.7 (2.9-21.5) kg, and a median creatinine clearance of 179 (44-384) mL/min/1.73m2, who received intravenous infusions of colistimethate each 8 hours. The median daily dose was 0.21 (0.20-0.21) million international units/kg, equivalent to 6.8 (6.5-6.9) mg of colistin base activity per kg/day. Plasma concentrations of colistimethate and formed colistin were subjected to population pharmacokinetic modeling to explore the patient factors influencing the concentration of colistin.

    RESULTS: The median, average, steady-state plasma concentration of colistin (Css,avg) was 0.88 mg/L; individual values ranged widely (0.41-3.50 mg/L), even though all patients received the same body weight-based daily dose. Although the daily doses were ~33% above the upper limit of the FDA- and EMA-recommended dose range, only 2 patients achieved Css,avg ≥2mg/L; the remaining 3 patients had Css,avg <1mg/L. The pharmacokinetic covariate analysis revealed that clearances of colistimethate and colistin were related to creatinine clearance.

    CONCLUSIONS: The FDA and EMA dosage recommendations may be suboptimal for many pediatric patients. Renal functioning is an important determinant of dosing in these patients.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics*
  2. Makmor-Bakry M, Ahmat A, Shamsuddin A, Lau CL, Ramli R
    Anaesthesiol Intensive Ther, 2019;51(3):218-223.
    PMID: 31434472 DOI: 10.5114/ait.2019.87362
    BACKGROUND: Failure of antibiotic treatment increases mortality of critically ill patients. This study investigated the association between the treatment resolution of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia and vancomycin pharmacokinetic variables.

    METHODS: A total of 28 critically ill patients were included in this study. All data were collected from medical, microbiology and pharmacokinetic records. The clinical response was evaluated on the basis of clinical and microbiological parameters. The 24-h area under the curve (AUC0-24) was estimated from a single trough level using established equations.

    RESULTS: Out of the 28 patients, 46% were classified as responders to vancomycin treatment. The trough vancomycin concentration did not differ between the responders and non-responders (15.02 ± 6.16 and 14.83 ± 4.80 μg mL-1; P = 0.929). High vancomycin minimum inhibitory concentration (MIC) was observed among the non-responders (P = 0.007). The ratio between vancomycin trough concentration and vancomycin MIC was significantly lower in the non-responder group (8.76 ± 3.43 vs. 12.29 ± 4.85 μg mL-1; P = 0.034). The mean ratio of estimated AUC0-24 and vancomycin MIC was 313.78 ± 117.17 μg h mL-1 in the non-responder group and 464.44 ± 139.06 μg h mL-1 in the responder group (P = 0.004). AUC0-24/MIC of ≥ 400 μg h mL-1 was documented for 77% of the responders and 27% of the non-responders (c2 = 7.03; P = 0.008).

    CONCLUSIONS: Ratio of trough concentration/MIC and AUC0-24/MIC of vancomycin are better predictors for MRSA treatment outcomes than trough vancomycin concentration or AUC0-24 alone. The single trough-based estimated AUC may be sufficient for the monitoring of treatment response with vancomycin.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics
  3. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics
  4. Mohd Sazlly Lim S, Heffernan AJ, Zowawi HM, Roberts JA, Sime FB
    Eur J Clin Microbiol Infect Dis, 2021 Sep;40(9):1943-1952.
    PMID: 33884516 DOI: 10.1007/s10096-021-04252-z
    Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are commonly used. In this study, we explored the potential efficacy of meropenem-sulbactam combination (MEM/SUL) against CR-AB. The checkerboard method was used to screen for synergistic activity of MEM/SUL against 50 clinical CR-AB isolates. Subsequently, time-kill studies against two CR-AB isolates were performed. Time-kill data were described using a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Subsequently, Monte Carlo simulations were performed to estimate the probability of 2-log kill, 1-log kill or stasis at 24-h following combination therapy. The MEM/SUL demonstrated synergy against 28/50 isolates. No antagonism was observed. The MIC50 and MIC90 of MEM/SUL were decreased fourfold, compared to the monotherapy MIC. In the time-kill studies, the combination displayed synergistic killing against both isolates at the highest clinically achievable concentrations. At concentrations equal to the fractional inhibitory concentration, synergism was observed against one isolate. The PK/PD model adequately delineated the data and the interaction between meropenem and sulbactam. The effect of the combination was driven by sulbactam, with meropenem acting as a potentiator. The simulations of various dosing regimens revealed no activity for the monotherapies. At best, the MEM/SUL regimen of 2 g/4 g every 8 h demonstrated a probability of target attainment of 2-log10 kill at 24 h of 34%. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that MEM/SUL may potentially be effective against some CR-AB infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics*
  5. Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al.
    Clin Pharmacokinet, 2023 Aug;62(8):1105-1116.
    PMID: 37300630 DOI: 10.1007/s40262-023-01265-z
    BACKGROUND AND OBJECTIVE: High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions.

    METHODS: C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation.

    RESULTS: Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%.

    CONCLUSION: C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links