This review summarizes the impact of tocotrienols (TCTs) as antioxidants in minimizing
oxidative stress (OS), particularly in embryos exposed to OS causing agents. OS level is
increased, for example, by nicotine, a major alkaloid content in cigarette, which is also a source
of exogenous reactive oxygen species (ROS). Increased nicotine-induced OS increases cell
stress response, which is a common trigger leading to embryonic cell death. Having more
profound anti-oxidative stress effects than its counterpart tocopherol, TCTs improve blastocyst
implantation, foetal growth, pregnancy outcome and survival of the neonates affected by
nicotine. In reversing cell developmental arrest caused by nicotine-induced OS, TCTs enhances
PDK-1 expression in the P13K/Akt pathway and permit embryonic development beyond the 4-
cell stage with the production of more morulae. At the cytoskeletal level, TCTs increase the
number of nicotine-induced apoptotic cells, through caspase 8 activation in the mitochondria.
TCTs facilitate rough endoplasmic reticulum (rER) stress-mediated apoptosis and autophagy,
resulting from nicotine-induced OS. Reduced vesicular population in TCT supplemented
oocytes on the other hand may suggest reduced secretion of apoptotic cell bodies thus probably
minimizing vesicular apoptosis during oocyte maturation. Further extensive research is
required to develop TCTs as a tool in specific therapeutic approaches to overcome the
detrimental effects of OS.
Cryopreservation by vitrification has been widely used in Assisted Reproductive Technology (ART) to preserve embryos for an extended period of time. However, the effect of vitrification on development of the embryos is lacking. Therefore, understanding on vitrification effects on embryonic proteins, especially those involved in preimplantation development is crucial to provide high quality embryos for further usage. In this study, XIAP and S6K1 protein expressions following vitrification was investigated, since they have been implicated in diverse cellular processes including cell growth, migration, proliferation, differentiation, survival and development of preimplantation embryos via the PI3K pathway. Embryos were obtained from superovulated female ICR mice which were mated with fertile males. The embryos were harvested at the 2-cell stage and cultured until blastocyst stage. Blastocysts were then vitrified in ESF40 cryoprotectant. Western blot was carried out to determine the expression of XIAP and S6K1 proteins. The results showed the expression of XIAP and S6K1 significantly decreased in vitrified blastocyst compared to the control. This indicates that blastocyst vitrification may impact developmental competence through the activation of apoptotic pathways.
This review summarizes the impact of tocotrienols (TCTs) as antioxidants in minimizing oxidative stress (OS), particularly in embryos exposed to OS causing agents. OS level is increased, for example, by nicotine, a major alkaloid content in cigarette, which is also a source of exogenous reactive oxygen species (ROS). Increased nicotine-induced OS increases cell stress response, which is a common trigger leading to embryonic cell death. Having more profound anti-oxidative stress effects than its counterpart tocopherol, TCTs improve blastocyst implantation, foetal growth, pregnancy outcome and survival of the neonates affected by nicotine. In reversing cell developmental arrest caused by nicotine-induced OS, TCTs enhances PDK-1 expression in the P13K/Akt pathway and permit embryonic development beyond the 4-cell stage with the production of more morulae. At the cytoskeletal level, TCTs increase the number of nicotine-induced apoptotic cells, through caspase 8 activation in the mitochondria. TCTs facilitate rough endoplasmic reticulum (rER) stress-mediated apoptosis and autophagy, resulting from nicotine-induced OS. Reduced vesicular population in TCT supplemented oocytes on the other hand may suggest reduced secretion of apoptotic cell bodies thus probably minimizing vesicular apoptosis during oocyte maturation. Further extensive research is required to develop TCTs as a tool in specific therapeutic approaches to overcome the detrimental effects of OS.