Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Ahmad A, Abu Osman NA, Mokhtar H, Mehmood W, Kadri NA
    Proc Inst Mech Eng H, 2019 Sep;233(9):901-908.
    PMID: 31244368 DOI: 10.1177/0954411919856144
    The Chêneau brace has proven its effectiveness in treating the adolescent idiopathic scoliosis patients. However, no studies reported on the analysis of interface pressure in double-curve adolescent idiopathic scoliosis patients. In this study, we evaluated the interface pressure of the Chêneau brace action in double-curve adolescent idiopathic scoliosis patient treatment. A total of 72 (60 girls and 12 boys) patients aged 10 years and above participated in the study. The F-Socket transducers (9811E) were used to evaluate the pressure on the right thoracic and left thoracolumbar curves between normal and maximum strap tension and variation in these interface pressures with other tasks. Each patient was asked to do nine different tasks corresponding to daily activities, and the interface pressures for each activity were recorded for both normal and maximum tension. The resultant mean peak pressure in double-curve adolescent idiopathic scoliosis was higher for right thoracic curves than left thoracolumbar curves in all tasks. The pressure significantly increased at the task of maximal inspiration (p 
    Matched MeSH terms: Braces*
  2. Fuss FK, Ahmad A, Tan AM, Razman R, Weizman Y
    Sensors (Basel), 2021 Feb 06;21(4).
    PMID: 33562166 DOI: 10.3390/s21041153
    Hard-shell thoracolumbar sacral orthoses (TLSOs) are used for treating idiopathic scoliosis, a deformation of the spine with a sideways curvature. The pressure required inside the TLSO for ideal corrective results remains unclear. Retrofitting TLSOs with commercially available pressure measurement systems is expensive and can only be performed in a laboratory. The aim of this study was to develop a cost-effective but accurate pressure sensor system for TLSOs. The sensor was built from a piezoresistive polymer, placed between two closed-cell foam liners, and evaluated with a material testing machine. Because foams are energy absorbers, the pressure-conductance curve was affected by hysteresis. The sensor was calibrated on a force plate with the transitions from loading to unloading used to establish the calibration curve. The root mean square error was 12% on average within the required pressure range of 0.01-0.13 MPa. The sensor reacted to the changing pressure during breathing and different activities when tested underneath a chest belt at different tensions. The peak pressure reached 0.135 MPa. The sensor was further tested inside the scoliosis brace during different activities. The measured pressure was 0.014-0.124 MPa. The results from this study enable cheaper and mobile systems to be used for clinical studies on the comfort and pressure of braces during daily activities.
    Matched MeSH terms: Braces*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links