OBJECTIVES:: To test the hypothesis that toe-out gait will reduce second peak knee adduction moment further and increase fall risk when combined with knee brace and laterally wedged insole in knee osteoarthritis patients.
STUDY DESIGN:: Single visit study with repeated measures.
METHODS:: First and second peak knee adduction moments, fall risk and comfort level. First and second peak knee adduction moments were determined from three-dimensional gait analysis, completed under six randomized conditions: (1) natural, (2) knee brace, (3) knee brace + toe-out gait, (4) laterally wedged insole, (5) laterally wedged insole + toe-out gait, and (6) knee brace + laterally wedged insole + toe-out gait. Fall risk was assessed by Biodex Balance System using three randomized stability settings: (1) static, (2) moderate dynamic setting (FR12), and (3) high dynamic setting (FR8).
RESULTS:: The reduction in first peak knee adduction moment and second peak knee adduction moment was greatest (7.16% and 25.55%, respectively) when toe-out gait combine with knee brace and laterally wedged insole. Significant increase in fall risk was observed with knee brace + laterally wedged insole + toe-out gait (42.85%) at FR12. Similar significant balance reductions were found at FR8 condition for knee brace + toe-out gait (35.71%), laterally wedged insole + toe-out gait (28.57%), and knee brace + laterally wedged insole + toe-out gait (50%) as compared to natural. However, knee brace decreased fall risk at FR12 by 28.57%.
CONCLUSION:: There is a synergistic effect of toe-out when combined with knee brace and laterally wedged insole concurrently in second peak knee adduction moment reduction but with a greater degree of fall risk. Simultaneous use of conservative treatments also decreases comfort level.
CLINICAL RELEVANCE: Patients with mild and moderate knee osteoarthritis are usually prescribed conservative treatment techniques. This study will provide an insight whether or not a combination of these techniques have a synergistic effect in reducing knee joint load.
METHODS: An online REDCap questionnaire was circulated to surgeons in the Asia-Pacific region during the period of July 2019 to September 2019 to inquire about various components of nonoperative treatment for AIS. Aspects under study included access to screening, when MRIs were obtained, quality-of-life assessments used, role of scoliosis-specific exercises, bracing criteria, type of brace used, maturity parameters used, brace wear regimen, follow-up criteria, and how braces were weaned. Comparisons were made between middle-high income and low-income countries, and experience with nonoperative treatment.
RESULTS: A total of 103 responses were collected. About half (52.4%) of the responders had scoliosis screening programs and were particularly situated in middle-high income countries. Up to 34% obtained MRIs for all cases, while most would obtain MRIs for neurological problems. The brace criteria were highly variable and was usually based on menarche status (74.7%), age (59%), and Risser staging (92.8%). Up to 52.4% of surgeons elected to brace patients with large curves before offering surgery. Only 28% of responders utilized CAD-CAM techniques for brace fabrication and most (76.8%) still utilized negative molds. There were no standardized criteria for brace weaning.
CONCLUSION: There are highly variable practices related to nonoperative treatment for AIS and may be related to availability of resources in certain countries. Relative consensus was achieved for when MRI should be obtained and an acceptable brace compliance should be more than 16 hours a day.