Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ
    Microb Drug Resist, 2020 Mar;26(3):190-203.
    PMID: 31545116 DOI: 10.1089/mdr.2019.0199
    Background:
    Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life.
    Materials and Methods:
    In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates.
    Results:
    The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance.
    Conclusion:
    The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
    Matched MeSH terms: Carbapenems/pharmacology
  2. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J Med Microbiol, 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: Carbapenems/pharmacology
  3. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Carbapenems/pharmacology
  4. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: Carbapenems/pharmacology
  5. Tan SY, Khan RA, Khalid KE, Chong CW, Bakhtiar A
    Sci Rep, 2022 Feb 24;12(1):3106.
    PMID: 35210515 DOI: 10.1038/s41598-022-07142-2
    Inappropriate use of antibiotics has been shown to contribute to the occurrence of multidrug-resistant organisms (MROs). A surveillance study was performed in the largest tertiary care hospital in Kuala Lumpur, Malaysia, from 2018 to 2020 to observe the trends of broad-spectrum antibiotics (beta-lactam/beta-lactamases inhibitors (BL/BLI), extended-spectrum cephalosporins (ESC), and fluoroquinolones (FQ)) and antibiotics against MRO (carbapenems, polymyxins, and glycopeptides) usage and the correlation between antibiotic consumption and MROs. The correlation between 3-year trends of antibiotic consumption (defined daily dose (DDD)/100 admissions) with MRO infection cases (per 100 admissions) was determined using a Jonckheere-Terpstra test and a Pearson's Correlation coefficient. The antimicrobial resistance trend demonstrated a positive correlation between ESC and FQ towards the development of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Klebsiella spp, ESBL-producing Escherichia coli (E. coli), and MRO Acinetobacter baumannii (A. baumannii). Increasing carbapenem consumption was positively correlated with the occurrence of ESBL-producing Klebsiella spp and E. coli. Polymyxin use was positively correlated with ESBL-producing Klebsiella spp, MRO A. baumannii, and carbapenem-resistant Enterobacteriaceae. The findings reinforced concerns regarding the association between MRO development, especially with a surge in ESC and FQ consumption. Stricter use of antimicrobials is thus crucial to minimise the risk of emerging resistant organisms.
    Matched MeSH terms: Carbapenems/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links