Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Goh XT, Chua KH, Kee BP, Lim YAL
    Trop Med Int Health, 2020 02;25(2):172-185.
    PMID: 31733137 DOI: 10.1111/tmi.13348
    OBJECTIVE: Plasmodium knowlesi, the fifth human malaria parasite, has caused mortality in humans. We aimed to identify P. knowlesi novel binding peptides through a random linear dodecapeptide phage display targeting the 19-kDa fragment of Merozoite Surface Protein-1 protein.

    METHODS: rPkMSP-119 protein was heterologously expressed using Expresso® Solubility and Expression Screening System and competent E. cloni® 10G cells according to protocol. Three rounds of biopanning were performed on purified rPkMSP-119 to identify binding peptides towards rPkMSP-119 using Ph.D.™-12 random phage display library. Binding sites of the identified peptides to PkMSP-119 were in silico predicted using the CABS-dock web server.

    RESULTS: Four phage peptide variants that bound to PkMSP-119 were identified after three rounds of biopanning, namely Pkd1, Pkd2, Pkd3 and Pkd4. The sequences of both Pkd1 and Pkd2 consist of a large number of histidine residues. Pkd1 showed positive binding signal with 6.1× vs. BSA control. Docking results showed that Pkd1 and Pkd2 were ideal binding peptides for PkMSP-119 .

    CONCLUSION: We identified two novel binding peptides of PkMSP-119 , Pkd1 (HFPFHHHKLRAH) and Pkd2 (HPMHMLHKRQHG), through phage display. They provide a valuable starting point for the development of novel therapeutics.

    Matched MeSH terms: DNA, Protozoan/analysis
  2. Hu TH, Rosli N, Mohamad DSA, Kadir KA, Ching ZH, Chai YH, et al.
    Sci Rep, 2021 10 11;11(1):20117.
    PMID: 34635723 DOI: 10.1038/s41598-021-99644-8
    Plasmodium knowlesi, a simian malaria parasite responsible for all recent indigenous cases of malaria in Malaysia, infects humans throughout Southeast Asia. There are two genetically distinct subpopulations of Plasmodium knowlesi in Malaysian Borneo, one associated with long-tailed macaques (termed cluster 1) and the other with pig-tailed macaques (cluster 2). A prospective study was conducted to determine whether there were any between-subpopulation differences in clinical and laboratory features, as well as in epidemiological characteristics. Over 2 years, 420 adults admitted to Kapit Hospital, Malaysian Borneo with knowlesi malaria were studied. Infections with each subpopulation resulted in mostly uncomplicated malaria. Severe disease was observed in 35/298 (11.7%) of single cluster 1 and 8/115 (7.0%) of single cluster 2 infections (p = 0.208). There was no clinically significant difference in outcome between the two subpopulations. Cluster 1 infections were more likely to be associated with peri-domestic activities while cluster 2 were associated with interior forest activities consistent with the preferred habitats of the respective macaque hosts. Infections with both P. knowlesi subpopulations cause a wide spectrum of disease including potentially life-threatening complications, with no implications for differential patient management.
    Matched MeSH terms: DNA, Protozoan/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links