Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Gupta G, Singhvi G, Chellappan DK, Sharma S, Mishra A, Dahiya R, et al.
    Panminerva Med, 2018 Sep;60(3):109-116.
    PMID: 30176701 DOI: 10.23736/S0031-0808.18.03462-6
    Glioblastoma, also known as glioblastoma multiforme, is the most common and worldwide-spread cancer that begins within the brain. Glioblastomas represent 15% of brain tumors. The most common length of survival following diagnosis is 12 to 14 months with less than 3% to 5% of people surviving longer than five years. Without treatment, survival is typically 3 months. Among all receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in glioblastoma. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPAR. There has been interesting preliminary evidence suggesting that diabetic patients receiving PPARγ agonists, a group of anti-diabetics, thiazolidinedione drugs, have an increased median survival for glioblastoma. In this paper, the recent progresses in understanding the potential mechanism of PPARγ in glioblastoma are summarized.
    Matched MeSH terms: Glucose/chemistry
  2. Samrot AV, Angalene JLA, Roshini SM, Stefi SM, Preethi R, Raji P, et al.
    Int J Biol Macromol, 2019 Nov 01;140:393-400.
    PMID: 31425761 DOI: 10.1016/j.ijbiomac.2019.08.121
    In this study, gum of Araucaria heterophylla was collected. The collected gum was subjected for extraction of polysaccharide using solvent extraction system. Thus, extracted polysaccharide was further purified using solvent method and was characterized using UV-Vis spectroscopy, Phenol sulfuric acid assay, FTIR, TGA, TLC and GC-MS. The gum derived polysaccharide was found to have the following sugars Rhamnose, Allose, Glucosinolate, Threose, Idosan, Galactose and Arabinose. The extracted polysaccharide was tested for various in-vitro bioactive studies such as antibacterial activity, antioxidant activity and anticancer activity. The polysaccharide was found to have antioxidant and anticancer activity. Further, the polysaccharide was subjected for carboxymethylation to favor the nanocarrier synthesis, where it was chelated using Sodium Tri Meta Phosphate (STMP) to form nanocarriers. The nanocarriers so formed were loaded with curcumin and were characterized using FTIR, SEM, EDX and AFM. Both the loaded and unloaded nanocarriers were studied for its in-vitro cytotoxic effect against the MCF7 human breast cancer cell lines. The nanocarriers were found to deliver the drug efficiently against the cancer cell line used in this study.
    Matched MeSH terms: Glucose/chemistry
  3. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Glucose/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links