Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Damayanti A, Ujang Z, Salim MR, Olsson G, Sulaiman AZ
    Bioresour Technol, 2010 Jan;101(1):144-9.
    PMID: 19734044 DOI: 10.1016/j.biortech.2009.08.034
    Activated sludge models (ASMs) have been widely used as a basis for further model development in wastewater treatment processes. Values for parameters to be used are vital for the accuracy of the modeling approach. A continuous stirred tank reactor (CSTR), as open respirometer with continuous flow for 20 h is used in ASMs. The dissolved oxygen (DO) profile for 11 days was monitored. It was found the mass transfer coefficient K(La) is 0.3 h(-1) during lag and start feed phase and 0.01 h(-1) during stop feed phase, while the heterotrophic yield coefficient Y(H) is 0.44. Some of the chemical oxygen demand (COD) fractionations of palm oil mill effluent (POME) using respirometric test in ASM models are S(s) 50 mg/L, S(I) 16,600 mg/L, X(S) 25,550 mg/L, and X(I) 2,800 mg/L. The comparison of experimental and ASM1 from OUR concentration is found to fit well.
    Matched MeSH terms: Industrial Waste/prevention & control*
  2. Halim SF, Kamaruddin AH, Fernando WJ
    Bioresour Technol, 2009 Jan;100(2):710-6.
    PMID: 18819793 DOI: 10.1016/j.biortech.2008.07.031
    This study aimed to develop an optimal continuous procedure of lipase-catalyzes transesterification of waste cooking palm oil in a packed bed reactor to investigate the possibility of large scale production further. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the two important reaction variables packed bed height (cm) and substrate flow rate(ml/min) for the transesterification of waste cooking palm oil in a continuous packed bed reactor. The optimum condition for the transesterification of waste cooking palm oil was as follows: 10.53 cm packed bed height and 0.57 ml/min substrate flow rate. The optimum predicted fatty acid methyl ester (FAME) yield was 80.3% and the actual value was 79%. The above results shows that the RSM study based on CCRD is adaptable for FAME yield studied for the current transesterification system. The effect of mass transfer in the packed bed reactor has also been studied. Models for FAME yield have been developed for cases of reaction control and mass transfer control. The results showed very good agreement compatibility between mass transfer model and the experimental results obtained from immobilized lipase packed bed reactor operation, showing that in this case the FAME yield was mass transfer controlled.
    Matched MeSH terms: Industrial Waste/prevention & control
  3. Poh PE, Chong MF
    Bioresour Technol, 2009 Jan;100(1):1-9.
    PMID: 18657414 DOI: 10.1016/j.biortech.2008.06.022
    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.
    Matched MeSH terms: Industrial Waste/prevention & control*
  4. Kamarudin SK, Shamsul NS, Ghani JA, Chia SK, Liew HS, Samsudin AS
    Bioresour Technol, 2013 Feb;129:463-8.
    PMID: 23266847 DOI: 10.1016/j.biortech.2012.11.016
    The production of methanol from agricultural, forestry, livestock, poultry, and fishery waste via pyrolysis was investigated. Pyrolysis was conducted in a tube furnace at 450-500 °C. Sugarcane bagasse showed the methanol production (5.93 wt.%), followed by roots and sawdust with 4.36 and 4.22 wt.%, respectively. Animal waste offered the lowest content of methanol, as only 0.46, 0.80, and 0.61 wt.% were obtained from fishery, goat, and cow waste, respectively. It was also observed that the percentage of methanol increased with an increase in volatile compounds while the percentage of ethanol increased with the percentage of ash and fix carbon. The data indicate that, pyrolysis is a means for production of methanol and ethanol after further optimization of the process and sample treatment.
    Matched MeSH terms: Industrial Waste/prevention & control
  5. Balakrishnan K, Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Jan;128:788-91.
    PMID: 23186664 DOI: 10.1016/j.biortech.2012.10.023
    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.
    Matched MeSH terms: Industrial Waste/prevention & control*
  6. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Industrial Waste/prevention & control
  7. Nor MH, Mubarak MF, Elmi HSh, Ibrahim N, Wahab MF, Ibrahim Z
    Bioresour Technol, 2015 Aug;190:458-65.
    PMID: 25799955 DOI: 10.1016/j.biortech.2015.02.103
    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.
    Matched MeSH terms: Industrial Waste/prevention & control
  8. Mushtaq F, Abdullah TA, Mat R, Ani FN
    Bioresour Technol, 2015 Aug;190:442-50.
    PMID: 25794811 DOI: 10.1016/j.biortech.2015.02.055
    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.
    Matched MeSH terms: Industrial Waste/prevention & control
  9. Tan HT, Dykes GA, Wu TY, Siow LF
    Appl Biochem Biotechnol, 2013 Aug;170(7):1602-13.
    PMID: 23709290 DOI: 10.1007/s12010-013-0298-8
    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.
    Matched MeSH terms: Industrial Waste/prevention & control*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links