Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang LF
    Virol J, 2014;11:102.
    PMID: 24890603 DOI: 10.1186/1743-422X-11-102
    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis.
    Matched MeSH terms: Lung/virology
  2. Baseler L, de Wit E, Scott DP, Munster VJ, Feldmann H
    Vet Pathol, 2015 Jan;52(1):38-45.
    PMID: 25352203 DOI: 10.1177/0300985814556189
    Nipah virus is a paramyxovirus in the genus Henipavirus, which has caused outbreaks in humans in Malaysia, India, Singapore, and Bangladesh. Whereas the human cases in Malaysia were characterized mainly by neurological symptoms and a case fatality rate of ∼40%, cases in Bangladesh also exhibited respiratory disease and had a case fatality rate of ∼70%. Here, we compared the histopathologic changes in the respiratory tract of Syrian hamsters, a well-established small animal disease model for Nipah virus, inoculated oronasally with Nipah virus isolates from human cases in Malaysia and Bangladesh. The Nipah virus isolate from Bangladesh caused slightly more severe rhinitis and bronchointerstitial pneumonia 2 days after inoculation in Syrian hamsters. By day 4, differences in lesion severity could no longer be detected. Immunohistochemistry demonstrated Nipah virus antigen in the nasal cavity and pulmonary lesions; the amount of Nipah virus antigen present correlated with lesion severity. Immunohistochemistry indicated that both Nipah virus isolates exhibited endotheliotropism in small- and medium-caliber arteries and arterioles, but not in veins, in the lung. This correlated with the location of ephrin B2, the main receptor for Nipah virus, in the vasculature. In conclusion, Nipah virus isolates from outbreaks in Malaysia and Bangladesh caused a similar type and severity of respiratory tract lesions in Syrian hamsters, suggesting that the differences in human disease reported in the outbreaks in Malaysia and Bangladesh are unlikely to have been caused by intrinsic differences in these 2 virus isolates.
    Matched MeSH terms: Lung/virology
  3. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA
    PLoS Negl Trop Dis, 2016 06;10(6):e0004775.
    PMID: 27341030 DOI: 10.1371/journal.pntd.0004775
    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
    Matched MeSH terms: Lung/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links