Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Camacho F, Moreno E, Garcia-Alles LF, Chinea Santiago G, Gilleron M, Vasquez A, et al.
    Front Immunol, 2020;11:566710.
    PMID: 33162982 DOI: 10.3389/fimmu.2020.566710
    Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.
    Matched MeSH terms: Mycobacterium tuberculosis/immunology*
  2. Sheffee NS, Rubio-Reyes P, Mirabal M, Calero R, Carrillo-Calvet H, Chen S, et al.
    Nanomedicine, 2021 06;34:102374.
    PMID: 33675981 DOI: 10.1016/j.nano.2021.102374
    Despite recent advances in diagnosis, tuberculosis (TB) remains one of the ten leading causes of death worldwide. Here, we engineered Mycobacterium tuberculosis (Mtb) proteins (ESAT6, CFP10, and MTB7.7) to self-assemble into core-shell nanobeads for enhanced TB diagnosis. Respective purified Mtb antigen-coated polyester beads were characterized and their functionality in TB diagnosis was tested in whole blood cytokine release assays. Sensitivity and specificity were studied in 11 pulmonary TB patients (PTB) and 26 healthy individuals composed of 14 Tuberculin Skin Test negative (TSTn) and 12 TST positive (TSTp). The production of 6 cytokines was determined (IFNγ, IP10, IL2, TNFα, CCL3, and CCL11). To differentiate PTB from healthy individuals (TSTp + TSTn), the best individual cytokines were IL2 and CCL11 (>80% sensitivity and specificity) and the best combination was IP10 + IL2 (>90% sensitivity and specificity). We describe an innovative approach using full-length antigens attached to biopolyester nanobeads enabling sensitive and specific detection of human TB.
    Matched MeSH terms: Mycobacterium tuberculosis/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links