Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Kho CL, Mohd-Azmi ML, Arshad SS, Yusoff K
    J Virol Methods, 2000 Apr;86(1):71-83.
    PMID: 10713378
    A sensitive and specific RT-nested PCR coupled with an ELISA detection system for detecting Newcastle disease virus is described. Two nested pairs of primer which were highly specific to all the three different pathotypes of NDV were designed from the consensus fusion gene sequence. No cross-reactions with other avian infectious agents such as infectious bronchitis virus, infectious bursal disease virus, influenza virus, and fowl pox virus were observed. Based on agarose electrophoresis detection, the RT-nested PCR was about 100 times more sensitive compared to that of a non-nested RT-PCR. To facilitate the detection of the PCR product, an ELISA detection method was then developed to detect the amplified PCR products and it was shown to be ten times more sensitive than gel electrophoresis. The efficacy of the nested PCR-ELISA was also compared with the conventional NDV detection method (HA test) and non-nested RT-PCR by testing against a total of 35 tissue specimens collected from ND-symptomatic chickens. The RT-nested PCR ELISA found NDV positive in 21 (60%) tissue specimens, while only eight (22.9%) and two (5.7%) out of 35 tissue specimens were tested NDV positive by both the non-nested RT-PCR and conventional HA test, respectively. Due to its high sensitivity for the detection of NDV from tissue specimens, this PCR-ELISA based diagnostic test may be useful for screening large number of samples.
    Matched MeSH terms: Newcastle disease virus/genetics
  2. Choi KS, Kye SJ, Kim JY, Damasco VR, Sorn S, Lee YJ, et al.
    Virus Genes, 2013 Oct;47(2):244-9.
    PMID: 23764918 DOI: 10.1007/s11262-013-0930-2
    Three isolates of Newcastle disease virus (NDV) were isolated from tracheal samples of dead village chickens in two provinces (Phnom Penh and Kampong Cham) in Cambodia during 2011-2012. All of these Cambodian NDV isolates were categorized as velogenic pathotype, based on in vivo pathogenicity tests and F cleavage site motif sequence ((112)RRRKRF(117)). The phylogenetic analysis and the evolutionary distances based on the sequences of the F gene revealed that all the three field isolates of NDV from Cambodia form a distinct cluster (VIIh) together with three Indonesian strains and were assigned to the genotype VII within the class II. Further phylogenetic analysis based on the hyper-variable region of the F gene revealed that some of NDV strains from Malaysia since the mid-2000s were also classified into the VIIh virus. This indicates that the VIIh NDVs are spreading through Southeast Asia. The present investigation, therefore, emphasizes the importance of further surveillance of NDV in neighboring countries as well as throughout Southeast Asia to contain further spreading of these VIIh viruses.
    Matched MeSH terms: Newcastle disease virus/genetics*
  3. Berhanu A, Ideris A, Omar AR, Bejo MH
    Virol J, 2010;7:183.
    PMID: 20691110 DOI: 10.1186/1743-422X-7-183
    Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene.
    Matched MeSH terms: Newcastle disease virus/genetics*
  4. Yap CF, Tan WS, Sieo CC, Tey BT
    Biotechnol Prog, 2013 Mar-Apr;29(2):564-7.
    PMID: 23364925 DOI: 10.1002/btpr.1697
    NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
    Matched MeSH terms: Newcastle disease virus/genetics*
  5. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Newcastle disease virus/genetics*
  6. Kho CL, Tan WS, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):117-21.
    PMID: 12186767
    The phosphoprotein (P) gene of a heat stable Newcastle disease virus (NDV) was cloned, sequenced and expressed in Escherichia coli. SDS-PAGE analysis of the recombinant P protein (395 amino acids) and a C-terminal extension derivative (424 amino acids), gave rise to two distinct protein bands with molecular masses of approximately 53-55 and 56-58 kDa, respectively, which are approximately 26-30% heavier than those calculated from the deduced amino acid sequences. The differences in molecular mass on SDS-PAGE are thought to be attributed to the acidic nature of the P protein (pI=6.27) and also the different degrees of phosphorylation in the prokaryotic cell. Amino acid sequence comparison of the P protein among the published NDV strains showed that they were highly conserved particularly at the putative phosphorylation sites.
    Matched MeSH terms: Newcastle disease virus/genetics*
  7. Abolnik C, Mubamba C, Wandrag DBR, Horner R, Gummow B, Dautu G, et al.
    Transbound Emerg Dis, 2018 Apr;65(2):e393-e403.
    PMID: 29178267 DOI: 10.1111/tbed.12771
    It is widely accepted that Newcastle disease is endemic in most African countries, but little attention has been afforded to establishing the sources and frequency of the introductions of exotic strains. Newcastle disease outbreaks have a high cost in Africa, particularly on rural livelihoods. Genotype VIIh emerged in South-East Asia and has since caused serious outbreaks in poultry in Malaysia, Indonesia, southern China, Vietnam and Cambodia. Genotype VIIh reached the African continent in 2011, with the first outbreaks reported in Mozambique. Here, we used a combination of phylogenetic evidence, molecular dating and epidemiological reports to trace the origins and spread of subgenotype VIIh Newcastle disease in southern Africa. We determined that the infection spread northwards through Mozambique, and then into the poultry of the north-eastern provinces of Zimbabwe. From Mozambique, it also reached neighbouring Malawi and Zambia. In Zimbabwe, the disease spread southward towards South Africa and Botswana, causing outbreaks in backyard chickens in early-to-mid 2013. In August 2013, the disease entered South Africa's large commercial industry, and the entire country was infected within a year, likely through fomites and the movements of cull chickens. Illegal poultry trading or infected waste from ships and not wild migratory birds was the likely source of the introduction to Mozambique in 2011.
    Matched MeSH terms: Newcastle disease virus/genetics
  8. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
    Matched MeSH terms: Newcastle disease virus/genetics
  9. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Newcastle disease virus/genetics
  10. Rasoli M, Yeap SK, Tan SW, Moeini H, Ideris A, Bejo MH, et al.
    Comp Immunol Microbiol Infect Dis, 2014 Jan;37(1):11-21.
    PMID: 24225159 DOI: 10.1016/j.cimid.2013.10.003
    Newcastle disease (ND) is a highly contagious avian disease and one of the major causes of economic losses in the poultry industry. The emergence of virulent NDV genotypes and repeated outbreaks of NDV in vaccinated chickens have raised the need for fundamental studies on the virus-host interactions. In this study, the profiles of B and T lymphocytes and macrophages and differential expression of 26 immune-related genes in the spleen of specific-pathogen-free (SPF) chickens, infected with either the velogenic genotype VII NDV strain IBS002 or the genotype VIII NDV strain AF2240, were evaluated. A significant reduction in T lymphocyte population and an increase in the infiltration of IgM+ B cells and KUL01+ macrophages were detected in the infected spleens at 1, 3 and 4 days post-infection (dpi) (P<0.05). The gene expression profiles showed an up-regulation of CCLi3, CXCLi1, CXCLi2 (IL-8), IFN-γ, IL-12α, IL-18, IL-1β, IL-6, iNOS, TLR7, MHCI, IL-17F and TNFSF13B (P<0.05). However, these two genotypes showed different cytokine expression patterns and viral load. IBS002 showed higher viral load than AF2240 in spleen at 3 and 4dpi and caused a more rapid up-regulation of CXCLi2, IFN-γ, IL-12α, IL-18, IL-1β, iNOS and IL-10 at 3dpi. Meanwhile, the expression levels of CCLI3, CXCLi1, IFN-γ, IL-12α, IL-1β and iNOS genes were significantly higher in AF2240 at 4dpi. In addition, the expression levels of IL-10 were significantly higher in the IBS002-infected chickens at 3 and 4dpi. Hence, infection with velogenic genotype VII and VIII NDV induced different viral load and production of cytokines and chemokines associated with inflammatory reactions.
    Matched MeSH terms: Newcastle disease virus/genetics
  11. Yang CY, Chang PC, Hwang JM, Shieh HK
    Avian Dis, 1997 Apr-Jun;41(2):365-73.
    PMID: 9201401
    Portions of the hemagglutinin neuraminidase (HN) gene of Newcastle disease virus (NDV) isolates from two recent outbreaks were sequenced to investigate epidemiology of this disease in Taiwan. These NDV isolates were all viscerotropic velogenic according to the clinical lesions produced in chickens. Sequence data were obtained from 14 NDV isolates (12 from 1995 and 2 from 1984). All isolates differed in their nucleotide sequences (from 0.3 to 15.3%), and represented potentially different strains of NDV. Phylogenetic analysis revealed that these isolates are closely related to viruses isolated from Japan and Malaysia. Some viruses isolated in 1995 appeared to evolve from viruses isolated in 1984. The results suggest that the 1995 outbreak of Newcastle disease (ND) in Taiwan may have been caused by multiple strains of velogenic NDV that have cocirculated in Taiwan for some time. Moreover, NDV isolates from racing pigeons were very similar to isolates from chickens in the same period, suggesting that both domestic and free-living birds were involved in the spread of ND in Taiwan.
    Matched MeSH terms: Newcastle disease virus/genetics*
  12. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
    Matched MeSH terms: Newcastle disease virus/genetics
  13. Loke CF, Omar AR, Raha AR, Yusoff K
    Vet Immunol Immunopathol, 2005 Jul 15;106(3-4):259-67.
    PMID: 15963824
    Specific-pathogen free (SPF) chickens were inoculated with the plasmid constructs encoding the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of Newcastle disease virus (NDV), either individually or in combination and challenged with velogenic NDV. The antibody level against NDV was measured using commercial enzyme linked immunosorbent assay (ELISA). In the first immunization regimen, SPF chickens inoculated twice with NDV-F or NDV-HN constructs elicited antibody responses 1 week after the second injection. However, the levels of the antibody were low and did not confer significant protection from the lethal challenge. In addition, administration of the plasmid constructs with Freund's adjuvant did not improve the level of protection. In the second immunization regimen, chickens inoculated twice with the plasmid constructs emulsified with Freund's adjuvant induced significant antibody titers after the third injection. Three out of nine (33.3%) chickens vaccinated with pEGFP-HN, five of ten (50.0%) chickens vaccinated with pEGFP-F and nine of ten (90.0%) chickens vaccinated with combined pEGFP-F and pEGFP-HN were protected from the challenge. No significant differences in the levels of protection were observed when the chickens were vaccinated with linearized pEGFP-F. The results suggested that more than two injections with both F and HN encoding plasmid DNA were required to induce higher level of antibodies for protection against velogenic NDV in chickens.
    Matched MeSH terms: Newcastle disease virus/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links