Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Qamruddin I, Alam MK, Mahroof V, Karim M, Fida M, Khamis MF, et al.
    Pain Res Manag, 2021;2021:6624723.
    PMID: 34035871 DOI: 10.1155/2021/6624723
    Objective: Low-intensity pulsed ultrasound (LIPUS) is a noninvasive modality to stimulate bone remodeling (BR) and the healing of hard and soft tissues. This research evaluates the biostimulatory effect of LIPUS on the rate of orthodontic tooth movement (OTM) and associated pain, when applied at 3-week intervals.

    Methods: Twenty-two patients (11 males and 11 females; mean age 19.18 ± 2.00 years) having Angle's Class II division 1 malocclusion needing bilateral extractions of maxillary first bicuspids were recruited for this split-mouth randomized clinical trial. After the initial stage of alignment and leveling with contemporary edgewise MBT (McLaughlin-Bennett-Trevisi) prescription brackets (Ortho Organizers, Carlsbad, Calif) of 22 mil, followed by extractions of premolars bilaterally, 6 mm nickel-titanium spring was used to retract the canines separately by applying 150 g force on 0.019 × 0.025-in stainless steel working archwires. LIPUS (1.1 MHz frequency and 30 mW/cm2 intensity output) was applied for 20 minutes extraorally and reapplied after 3 weeks for 2 more successive visits over the root of maxillary canine on the experimental side whereas the other side was placebo. A numerical rating scale- (NRS-) based questionnaire was given to the patients on each visit to record their weekly pain experience. Impressions were also made at each visit before the application of LIPUS (T1, T2, and T3). Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland). Mann-Whitney U test was applied for comparison of canine movement and pain intensity between both the groups.

    Results: No significant difference in the rate of canine movement was found among the experimental (0.90 mm ± 0.33 mm) and placebo groups (0.81 mm ± 0.32 mm). There was no difference in pain reduction between experimental and placebo groups (p > 0.05).

    Conclusion: Single-dose application of LIPUS at 3-week intervals is ineffective in stimulating the OTM and reducing associated treatment pain.

    Matched MeSH terms: Tooth Movement/adverse effects*
  2. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A
    Pain Res Manag, 2021;2021:6690542.
    PMID: 34055122 DOI: 10.1155/2021/6690542
    Objective: To assess the effect of low-level laser applied at 3 weeks intervals on orthodontic tooth movement (OTM) and pain using conventional brackets (CB).

    Materials and Methods: Twenty patients with Angle's class II div 1 (10 males and 10 females; aged 20.25 ± 3.88 years) needing bilateral extractions of maxillary first bicuspids were recruited. Conventional brackets MBT of 0.022 in slot (McLaughlin Bennett Trevisi) prescription braces (Ortho Organizers, Carlsbad, Calif) were bonded. After alignment and levelling phase, cuspid retraction began with nitinol closed coil spring on 19 × 25 stainless steel archwire, wielding 150 gram force. 7.5 J/cm2 energy was applied on 10 points (5 buccal and 5 palatal) on the canine roots on the investigational side using gallium-aluminum-arsenic diode laser (940 nm wavelength, iLase™ Biolase, Irvine, USA) in a continuous mode. Target tissues were irradiated once in three weeks for 9 weeks at a stretch (T0, T1, and T2). Patients were given a feedback form based on the numeric rating scale (NRS) to record the pain intensity for a week. Silicon impressions preceded the coil activation at each visit (T0, T1, T2, and T3), and the casts obtained were scanned with the Planmeca CAD/CAM™ (Helsinki, Finland) scanner.

    Results: The regimen effectively accelerated (1.55 ± 0.25 mm) tooth movement with a significant reduction in distress on the investigational side as compared to the placebo side (94 ± 0.25 mm) (p < 0.05).

    Conclusions: This study reveals that the thrice-weekly LLLT application can accelerate OTM and reduce the associated pain.

    Matched MeSH terms: Tooth Movement/statistics & numerical data*
  3. Mohan K, Sivarajan S, Lau MN, Othman SA, Fayed MMS
    J Orofac Orthop, 2024 Mar;85(2):146-162.
    PMID: 35829730 DOI: 10.1007/s00056-022-00411-9
    PURPOSE: This review systematically evaluates the evidence related to comparisons between skeletal and conventional anchorage protocols in the treatment of bimaxillary proclination patients who underwent premolars extraction with respect to soft tissue profile changes, treatment duration and three-dimensional (3D) soft tissue changes.

    METHODS: Electronic database search and hand search with no language limitations were conducted in the Cochrane Library, PubMed, Ovid, Web of Science, Scopus and ClinicalTrials.gov. The selection criteria were set to include studies with patients aged 13 years and above requiring extractions of upper and lower first premolars to treat bimaxillary proclination with high anchorage demand. Risk of bias assessment was undertaken with Cochrane's Risk Of Bias tool 2.0 (ROB 2.0) for randomised controlled trials (RCTs) and ROBINS‑I tool for nonrandomised prospective studies. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach was used for quality assessment. Results were summarised qualitatively; no meta-analysis was conducted.

    RESULTS: Two RCTs and two nonrandomised prospective studies were included. According to the GRADE approach, there is low to very low quality of evidence that treatment using mini-implant anchorage may significantly change nasolabial angle, upper and lower lip procumbence, and facial convexity angle compared to treatment with conventional anchorage. Similarly, very low quality evidence exists showing no differences in treatment duration between treatments with skeletal or conventional anchorage.

    CONCLUSIONS: The overall existing evidence regarding the effect of anchorage protocols on soft tissue changes in patients with bimaxillary protrusion and premolar extraction treatment plans is of low quality.

    TRIAL REGISTRATION NUMBER: PROSPERO CRD42020216684.

    Matched MeSH terms: Tooth Movement/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links