Displaying all 9 publications

  1. Thinh DHQ, Sriraj W, Mansor M, Tan KH, Irawan C, Kurnianda J, et al.
    Pain Res Manag, 2018;2018:2193710.
    PMID: 29849841 DOI: 10.1155/2018/2193710
    Aim: The aim of this study was to examine patients' and physicians' satisfaction, and concordance of patient-physician satisfaction with patients' pain control status.

    Methods: This cross-sectional observational study involved 465 adults prescribed analgesics for cancer-related pain from 22 sites across Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam. Pain intensity, pain control satisfaction, and adequacy of analgesics for pain control were documented using questionnaires.

    Results: Most patients (84.4%) had stage III or IV cancer. On a scale of 0 (no pain) to 10 (worse pain), patients' mean worst pain intensity over 24 hours was 4.76 (SD 2.47). More physicians (19.0%) than patients (8.0%) reported dissatisfaction with patient's pain control. Concordance of patient-physician satisfaction was low (weighted kappa 0.36; 95% CI 0.03-0.24). Most physicians (71.2%) found analgesics to be adequate for pain control. Patients' and physicians' satisfaction with pain control and physician-assessed analgesic adequacy were significantly different across countries (P < 0.001 for all).

    Conclusions: Despite pain-related problems with sleep and quality of life, patients were generally satisfied with their pain control status. Interestingly, physicians were more likely to be dissatisfied with patients' pain control. Enhanced patient-physician communication, physicians' proactivity in managing opioid-induced adverse effects, and accessibility of analgesics have been identified to be crucial for successful cancer pain management. This study was registered at ClinicalTrials.gov (identifier NCT02664987).

  2. Zwiri A, Alrawashdeh MA, Khan M, Ahmad WMAW, Kassim NK, Ahmed Asif J, et al.
    Pain Res Manag, 2020;2020:5971032.
    PMID: 33005278 DOI: 10.1155/2020/5971032
    Objective: The aim of this systematic review was to evaluate the effectiveness of laser application in temporomandibular joint disorder.

    Methods: PubMed, SCOPUS, Science Direct, Web of Science, and Google Scholar electronic databases were searched systematically with restricting the languages to only English and year (January 2001 to March 2020), and studies were selected based on the inclusion criteria. Study quality and publication bias were assessed by using the Robvis, a software package of R statistical software.

    Results: This systematic review included 32 studies (1172 patients) based on the inclusion and exclusion criteria. Most of the studies reported significant reduction of pain by the use of the laser during TMD treatment. Two-thirds of the study (78.13%) found a better outcome comparing with conventional one. According to Robvis, 84.4% of the studies were high methodological studies with low risk of bias.

    Conclusion: TMD patients suffer with continuous pain for long time even after conventional treatment. Laser therapy shows a promising outcome of pain reduction for TMD patients. Therefore, laser therapy can be recommended for the TMD patients' better outcome. This trial is registered with PROSPERO (CRD42020177562).

  3. Marya A, Venugopal A, Vaid N, Alam MK, Karobari MI
    Pain Res Manag, 2020;2020:6677929.
    PMID: 33488889 DOI: 10.1155/2020/6677929
    Fixed orthodontic treatment has been compromised at many levels during the pandemic period, as clinics underwent a prolonged lockdown and patients could not be treated regularly. With the end of the pandemic nowhere in sight, may be it is time to put newer tools, such as clear aligner therapy, for better use. Fixed orthodontic appliances by nature are not always self-limiting, which, if left unmonitored over a long period may cause undesirable side effects, pain, and discomfort. The undesired tooth movements that may occur with arch wire-guided mechanics in addition to problems with cut wires or removed brackets may be minimized with the use of aligners. While the benefits of using aligners are for all to see, they do require extensive planning and careful evaluation of the progress. This article reviews the advantages of using aligners during the pandemic period and how it can be beneficial in helping orthodontists resume their practice.
  4. Chaudhary FA, Ahmad B, Javed MQ, Yakub SS, Arjumand B, Khan AM, et al.
    Pain Res Manag, 2021;2021:5512755.
    PMID: 34055118 DOI: 10.1155/2021/5512755
    This study aims to examine the association of orofacial pain and oral health status and oral health behaviours in facial burn patients. The participants in this cross-sectional study were randomly recruited from the Burn Care Center, Institute of Medical Sciences, Islamabad, Pakistan. An intraoral evaluation was carried out to record the DMFT and OHI-S. A self-administered questionnaire was used to collect information on sociodemographic status, brushing frequency, and dental visits. Orofacial pain during mandibular movement was assessed using the Visual Analogue Scale (VAS). Psychological status was assessed using the Generalized Anxiety Disorder Scale and Impact of Events Scale. ANOVA and simple and multiple linear regression tests were used to analyse the data. From the 90 facial burn patients included, the majority were below 34 years of age, female, single or divorced, and unemployed. The mean DMFT was 10.7, and 71% had poor oral hygiene. 56% of the participants had moderate-to-severe anxiety, and 68% had posttraumatic stress disorder. 53% of the participants had moderate-to-severe pain during mouth opening or moving the mandible with a mean score of 41.5. Analyses showed that orofacial pain was associated with less frequent brushing, irregular dental visits, greater DMFT score, and more plaque accumulation (OHI-S). It was also associated with employment status, the severity of a burn, anxiety, and stress. The treatment and management of dental and oral conditions in burn patients need judicious balance in controlling and accurate assessment of the pain and improving psychological problems in burn patients.
  5. Qamruddin I, Alam MK, Mahroof V, Karim M, Fida M, Khamis MF, et al.
    Pain Res Manag, 2021;2021:6624723.
    PMID: 34035871 DOI: 10.1155/2021/6624723
    Objective: Low-intensity pulsed ultrasound (LIPUS) is a noninvasive modality to stimulate bone remodeling (BR) and the healing of hard and soft tissues. This research evaluates the biostimulatory effect of LIPUS on the rate of orthodontic tooth movement (OTM) and associated pain, when applied at 3-week intervals.

    Methods: Twenty-two patients (11 males and 11 females; mean age 19.18 ± 2.00 years) having Angle's Class II division 1 malocclusion needing bilateral extractions of maxillary first bicuspids were recruited for this split-mouth randomized clinical trial. After the initial stage of alignment and leveling with contemporary edgewise MBT (McLaughlin-Bennett-Trevisi) prescription brackets (Ortho Organizers, Carlsbad, Calif) of 22 mil, followed by extractions of premolars bilaterally, 6 mm nickel-titanium spring was used to retract the canines separately by applying 150 g force on 0.019 × 0.025-in stainless steel working archwires. LIPUS (1.1 MHz frequency and 30 mW/cm2 intensity output) was applied for 20 minutes extraorally and reapplied after 3 weeks for 2 more successive visits over the root of maxillary canine on the experimental side whereas the other side was placebo. A numerical rating scale- (NRS-) based questionnaire was given to the patients on each visit to record their weekly pain experience. Impressions were also made at each visit before the application of LIPUS (T1, T2, and T3). Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland). Mann-Whitney U test was applied for comparison of canine movement and pain intensity between both the groups.

    Results: No significant difference in the rate of canine movement was found among the experimental (0.90 mm ± 0.33 mm) and placebo groups (0.81 mm ± 0.32 mm). There was no difference in pain reduction between experimental and placebo groups (p > 0.05).

    Conclusion: Single-dose application of LIPUS at 3-week intervals is ineffective in stimulating the OTM and reducing associated treatment pain.

  6. Farook TH, Jamayet NB, Abdullah JY, Alam MK
    Pain Res Manag, 2021;2021:6659133.
    PMID: 33986900 DOI: 10.1155/2021/6659133
    Purpose: The study explored the clinical influence, effectiveness, limitations, and human comparison outcomes of machine learning in diagnosing (1) dental diseases, (2) periodontal diseases, (3) trauma and neuralgias, (4) cysts and tumors, (5) glandular disorders, and (6) bone and temporomandibular joint as possible causes of dental and orofacial pain.

    Method: Scopus, PubMed, and Web of Science (all databases) were searched by 2 reviewers until 29th October 2020. Articles were screened and narratively synthesized according to PRISMA-DTA guidelines based on predefined eligibility criteria. Articles that made direct reference test comparisons to human clinicians were evaluated using the MI-CLAIM checklist. The risk of bias was assessed by JBI-DTA critical appraisal, and certainty of the evidence was evaluated using the GRADE approach. Information regarding the quantification method of dental pain and disease, the conditional characteristics of both training and test data cohort in the machine learning, diagnostic outcomes, and diagnostic test comparisons with clinicians, where applicable, were extracted.

    Results: 34 eligible articles were found for data synthesis, of which 8 articles made direct reference comparisons to human clinicians. 7 papers scored over 13 (out of the evaluated 15 points) in the MI-CLAIM approach with all papers scoring 5+ (out of 7) in JBI-DTA appraisals. GRADE approach revealed serious risks of bias and inconsistencies with most studies containing more positive cases than their true prevalence in order to facilitate machine learning. Patient-perceived symptoms and clinical history were generally found to be less reliable than radiographs or histology for training accurate machine learning models. A low agreement level between clinicians training the models was suggested to have a negative impact on the prediction accuracy. Reference comparisons found nonspecialized clinicians with less than 3 years of experience to be disadvantaged against trained models.

    Conclusion: Machine learning in dental and orofacial healthcare has shown respectable results in diagnosing diseases with symptomatic pain and with improved future iterations and can be used as a diagnostic aid in the clinics. The current review did not internally analyze the machine learning models and their respective algorithms, nor consider the confounding variables and factors responsible for shaping the orofacial disorders responsible for eliciting pain.

  7. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A
    Pain Res Manag, 2021;2021:6690542.
    PMID: 34055122 DOI: 10.1155/2021/6690542
    Objective: To assess the effect of low-level laser applied at 3 weeks intervals on orthodontic tooth movement (OTM) and pain using conventional brackets (CB).

    Materials and Methods: Twenty patients with Angle's class II div 1 (10 males and 10 females; aged 20.25 ± 3.88 years) needing bilateral extractions of maxillary first bicuspids were recruited. Conventional brackets MBT of 0.022 in slot (McLaughlin Bennett Trevisi) prescription braces (Ortho Organizers, Carlsbad, Calif) were bonded. After alignment and levelling phase, cuspid retraction began with nitinol closed coil spring on 19 × 25 stainless steel archwire, wielding 150 gram force. 7.5 J/cm2 energy was applied on 10 points (5 buccal and 5 palatal) on the canine roots on the investigational side using gallium-aluminum-arsenic diode laser (940 nm wavelength, iLase™ Biolase, Irvine, USA) in a continuous mode. Target tissues were irradiated once in three weeks for 9 weeks at a stretch (T0, T1, and T2). Patients were given a feedback form based on the numeric rating scale (NRS) to record the pain intensity for a week. Silicon impressions preceded the coil activation at each visit (T0, T1, T2, and T3), and the casts obtained were scanned with the Planmeca CAD/CAM™ (Helsinki, Finland) scanner.

    Results: The regimen effectively accelerated (1.55 ± 0.25 mm) tooth movement with a significant reduction in distress on the investigational side as compared to the placebo side (94 ± 0.25 mm) (p < 0.05).

    Conclusions: This study reveals that the thrice-weekly LLLT application can accelerate OTM and reduce the associated pain.

  8. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Omar MH, Mohd Tohid SF, et al.
    Pain Res Manag, 2018;2018:9536406.
    PMID: 29686743 DOI: 10.1155/2018/9536406
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
  9. Khan M, Nishi SE, Hassan SN, Islam MA, Gan SH
    Pain Res Manag, 2017;2017:7438326.
    PMID: 28827979 DOI: 10.1155/2017/7438326
    Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links