Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Velaithan V, Okuda KS, Ng MF, Samat N, Leong SW, Faudzi SM, et al.
    Invest New Drugs, 2017 04;35(2):166-179.
    PMID: 28058624 DOI: 10.1007/s10637-016-0423-y
    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27KIP1. Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.
    Matched MeSH terms: Zebrafish Proteins/metabolism
  2. Loganathan K, Moriya S, Parhar IS
    Zebrafish, 2018 10;15(5):473-483.
    PMID: 30102584 DOI: 10.1089/zeb.2018.1594
    Ambient light and temperature affect reproductive function by regulating kisspeptin and gonadotrophin-releasing hormone (GnRH) in vertebrates. Melatonin and melatonin receptors, as well as the two-pore domain K+ channel-related K+ (TREK) channels, are affected by light and/or temperature; therefore, these molecules could modulate kisspeptin and GnRH against ambient light and temperature. In this study, we investigated the effect of light and temperature, which affect melatonin levels in gene expression levels of TREK channels, kisspeptin, and GnRH. We first investigated the effects of different light and temperature conditions on brain melatonin concentrations by ELISA. Fish were exposed to either constant darkness, constant light, high temperature (35°C), or low temperature (20°C) for 72 h. Brain melatonin levels were significantly high under constant darkness and high temperature. We further investigated the effects of high brain melatonin levels by constant darkness and high temperature on gene expression levels of melatonin receptors (mt1, mt2, and mel1c), TREK channels (trek1b, trek2a, and trek2b), gnrh3, and kiss2 in the adult zebrafish brain by real-time polymerase chain reaction. Fish were exposed to constant darkness or elevated temperatures (35°C) for 72 h. trek2a, kiss2, and gnrh3 levels were increased under constant darkness. High temperature decreased gene expression levels of mt1, mt2, mel1c, and gnrh3 in the preoptic area, whereas other genes remained unchanged. Melatonin receptors, TREK channels, gnrh3, and kiss2 responded differently under high melatonin conditions. The melatonin receptors and the TREK channels could play roles in the regulation of reproduction by environmental cues, especially ambient light and temperature.
    Matched MeSH terms: Zebrafish Proteins/metabolism*
  3. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
    Matched MeSH terms: Zebrafish Proteins/metabolism
  4. Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS
    J. Chem. Neuroanat., 2017 Dec;86:92-99.
    PMID: 29074372 DOI: 10.1016/j.jchemneu.2017.10.004
    kcnk10a has been predicted in zebrafish to be a member of the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel family known as a thermoreceptor. Since reproduction is affected by temperature, Kcnk10a could be involved in the regulation of reproduction. However, expression of kcnk10a in the zebrafish brain and association with reproduction has not been identified. In this study, the full length sequence and localization of kcnk10a in the brain was investigated and gene expressions of the TREK channel family were examined to investigate association with reproduction. We initially identified the full length cDNA sequence of kcnk10a using Rapid Amplification of cDNA Ends and localization in the zebrafish brain using in situ hybridization. Furthermore, we examined the gene expression differences of kcnk2b, kcnk10a and kcnk10b mRNA between genders as well as developmental stages by real-time PCR. The deduced amino acid sequence of the identified kcnk10a mRNA contains highly conserved two pore domains and four transmembrane regions and was higher similarity to zebrafish Kcnk10b than zebrafish Kcnk2a and 2b. kcnk10a mRNA was widely distributed in the brain such as the preoptic area, hypothalamus and the midbrain. kcnk10a mRNA expression exhibited significant difference between mature male and female, and increase during puberty. Kcnk10a could be involved in the regulation of reproductive function.
    Matched MeSH terms: Zebrafish Proteins/metabolism*
  5. Loganathan K, Moriya S, Parhar IS
    Biochem Biophys Res Commun, 2018 02 12;496(3):927-933.
    PMID: 29395088 DOI: 10.1016/j.bbrc.2018.01.117
    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α2-adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α2-adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α2-adrenoceptor.
    Matched MeSH terms: Zebrafish Proteins/metabolism*
  6. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
    Matched MeSH terms: Zebrafish Proteins/metabolism
  7. Nathan FM, Ogawa S, Parhar IS
    J Neurochem, 2015 Nov;135(4):814-29.
    PMID: 26250886 DOI: 10.1111/jnc.13273
    The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.
    Matched MeSH terms: Zebrafish Proteins/metabolism*
  8. Huang L, Qi W, Zuo Y, Alias SA, Xu W
    Dev Comp Immunol, 2020 12;113:103779.
    PMID: 32735958 DOI: 10.1016/j.dci.2020.103779
    The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
    Matched MeSH terms: Zebrafish Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links