Displaying all 6 publications

Abstract:
Sort:
  1. Shafiee MN, Seedhouse C, Mongan N, Chapman C, Deen S, Abu J, et al.
    Mol Cell Endocrinol, 2016 Mar 15;424:94-101.
    PMID: 26802879 DOI: 10.1016/j.mce.2016.01.019
    Endometrial cancer (EC) is the most common gynaecological cancer amongst women in the UK. Although previous studies have found that women with polycystic ovary syndrome (PCOS) have at least a three-fold increase in endometrial cancer (EC) risk compared to women without PCOS, the precise molecular mechanisms which link between PCOS and EC remain unclear. It has been suggested that insulin resistance may contribute to the increased risk of EC in PCOS. The specific expression of genes related to the insulin-signalling pathway including the IGF system in the endometrium of women with PCOS has however never been measured and compared to that in women with EC without PCOS and control women without EC or PCOS. .

    Study site: University teaching hospital in the United Kingdom
  2. da Silva MP, Merino RM, Mecawi AS, Moraes DJ, Varanda WA
    Mol Cell Endocrinol, 2015 Jan 15;400:102-11.
    PMID: 25451978 DOI: 10.1016/j.mce.2014.11.004
    The phenotypic differentiation between oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurosecretory cells (MNCs) from the supraoptic nucleus is relevant to understanding how several physiological and pharmacological challenges affect their electrical activity. Although the firing patterns of OT and VP neurons, both in vivo and in vitro, may appear different from each other, much is assumed about their characteristics. These assumptions make it practically impossible to obtain a confident phenotypic differentiation based exclusively on the firing patterns. The presence of a sustained outward rectifying potassium current (SOR) and/or an inward rectifying hyperpolarization-activated current (IR), which are presumably present in OT neurons and absent in VP neurons, has been used to distinguish between the two types of MNCs in the past. In this study, we aimed to analyze the accuracy of the phenotypic discrimination of MNCs based on the presence of rectifying currents using comparisons with the molecular phenotype of the cells, as determined by single-cell RT-qPCR and immunohistochemistry. Our results demonstrated that the phenotypes classified according to the electrophysiological protocol in brain slices do not match their molecular counterparts because vasopressinergic and intermediate neurons also exhibit both outward and inward rectifying currents. In addition, we also show that MNCs can change the relative proportion of each cell phenotype when the system is challenged by chronic hypertonicity (70% water restriction for 7 days). We conclude that for in vitro preparations, the combination of mRNA detection and immunohistochemistry seems to be preferable when trying to characterize a single MNC phenotype.
  3. Chew YH, Shia YL, Lee CT, Majid FA, Chua LS, Sarmidi MR, et al.
    Mol Cell Endocrinol, 2009 Aug 13;307(1-2):57-67.
    PMID: 19524127 DOI: 10.1016/j.mce.2009.03.005
    A mathematical model to describe the oscillatory bursting activity of pancreatic beta-cells is combined with a model of glucose regulation system in this work to study the bursting pattern under regulated extracellular glucose stimulation. The bursting electrical activity in beta-cells is crucial for the release of insulin, which acts to regulate the blood glucose level. Different types of bursting pattern have been observed experimentally in glucose-stimulated islets both in vivo and in vitro, and the variations in these patterns have been linked to changes in glucose level. The combined model in this study enables us to have a deeper understanding on the regime change of bursting pattern when glucose level changes due to hormonal regulation, especially in the postprandial state. This is especially important as the oscillatory components of electrical activity play significant physiological roles in insulin secretion and some components have been found to be lost in type 2 diabetic patients.
  4. Chew YH, Shia YL, Lee CT, Majid FA, Chua LS, Sarmidi MR, et al.
    Mol Cell Endocrinol, 2009 May 6;303(1-2):13-24.
    PMID: 19428987 DOI: 10.1016/j.mce.2009.01.018
    A model of glucose regulation system was combined with a model of insulin-signaling pathways in this study. A feedback loop was added to link the transportation of glucose into cells (by GLUT4 in the insulin-signaling pathways) and the insulin-dependent glucose uptake in the glucose regulation model using the Michaelis-Menten kinetic model. A value of K(m) for GLUT4 was estimated using Genetic Algorithm. The estimated value was found to be 25.3 mM, which was in the range of K(m) values found experimentally from in vivo and in vitro human studies. Based on the results of this study, the combined model enables us to understand the overall dynamics of glucose at the systemic level, monitor the time profile of components in the insulin-signaling pathways at the cellular level and gives a good estimate of the K(m) value of glucose transportation by GLUT4. In conclusion, metabolic modeling such as displayed in this study provides a good predictive method to study the step-by-step reactions in an organism at different levels and should be used in combination with experimental approach to increase our understanding of metabolic disorders such as type 2 diabetes.
  5. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
  6. Mohd MA, Ahmad Norudin NA, Muhammad TST
    Mol Cell Endocrinol, 2020 04 05;505:110702.
    PMID: 31927097 DOI: 10.1016/j.mce.2020.110702
    Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links