Affiliations 

  • 1 Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
  • 2 Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5-A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
  • 3 Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia. Electronic address: sifzizul@umt.edu.my
Mol Cell Endocrinol, 2020 04 05;505:110702.
PMID: 31927097 DOI: 10.1016/j.mce.2020.110702

Abstract

Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.