Displaying publications 1 - 20 of 241 in total

Abstract:
Sort:
  1. Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, et al.
    Anal Biochem, 2020 07 01;600:113742.
    PMID: 32315616 DOI: 10.1016/j.ab.2020.113742
    The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
    Matched MeSH terms: Binding Sites
  2. Elgar CE, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, et al.
    J Am Chem Soc, 2023 Jan 18;145(2):1236-1246.
    PMID: 36607895 DOI: 10.1021/jacs.2c11111
    Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
    Matched MeSH terms: Binding Sites
  3. Alakbaree M, Abdulsalam AH, Ahmed HH, Ali FH, Al-Hili A, Omar MSS, et al.
    Comput Biol Chem, 2023 Jun;104:107873.
    PMID: 37141793 DOI: 10.1016/j.compbiolchem.2023.107873
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect that affects more than 500 million people worldwide. Individuals affected with G6PD deficiency may occasionally suffer mild-to-severe chronic hemolytic anemia. Chronic non-spherocytic hemolytic anemia (CNSHA) is a potential result of the Class I G6PD variants. This comparative computational study attempted to correct the defect in variants structure by docking the AG1 molecule to selected Class I G6PD variants [G6PDNashville (Arg393His), G6PDAlhambra (Val394Leu), and G6PDDurham (Lys238Arg)] at the dimer interface and structural NADP+ binding site. It was followed by an analysis of the enzyme conformations before and after binding to the AG1 molecule using the molecular dynamics simulation (MDS) approach, while the severity of CNSHA was determined via root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, salt bridges, radius of gyration (Rg), solvent accessible surface area analysis (SASA), and principal component analysis (PCA). The results revealed that G6PDNashville (Arg393His) and G6PDDurham (Lys238Arg) had lost the direct contact with structural NADP+ and salt bridges at Glu419 - Arg427 and Glu206 - Lys407 were disrupted in all selected variants. Furthermore, the AG1 molecule re-stabilized the enzyme structure by restoring the missing interactions. Bioinformatics approaches were also used to conduct a detailed structural analysis of the G6PD enzyme at a molecular level to understand the implications of these variants toward enzyme function. Our findings suggest that despite the lack of treatment for G6PDD to date, AG1 remains a novel molecule that promotes activation in a variety of G6PD variants.
    Matched MeSH terms: Binding Sites
  4. Mohamad FH, Mohamad Jamali MA, Che Has AT
    J Mol Neurosci, 2023 Oct;73(9-10):804-817.
    PMID: 37750966 DOI: 10.1007/s12031-023-02158-3
    The γ-aminobutyric acid type A receptor (GABA (A) receptor) is a membrane protein activated by the neurotransmitter GABA. Structurally, this major inhibitory neurotransmitter receptor in the human central nervous system is a pentamer that can be built from a selection of 19 subunits consisting of α(1,2,3,4,5 or 6), β (1,2 or 3), γ (1,2 or 3), ρ (1,2 or 3), and δ, π, θ, and ε. This creates several possible pentameric arrangements, which also influence the pharmacological and physiological properties of the receptor. The complexity and heterogeneity of the receptors are further increased by the addition of short and long splice variants in several subunits and the existence of multiple allosteric binding sites and expansive ligands that can bind to the receptors. Therefore, a comprehensive understanding of the structure and function of the receptors is required to gain novel insights into the consequences of receptor dysfunction and subsequent drug development studies. Notably, advancements in computational-aided studies have facilitated the elucidation of residual interactions and exploring energy binding, which may otherwise be challenging to investigate. In this review, we aim to summarize the current understanding of the structure and function of GABA (A) receptors obtained from advancements in computational-aided applications.
    Matched MeSH terms: Binding Sites
  5. Avin FA, Bhassu S, Tan YS, Shahbazi P, Vikineswary S
    ScientificWorldJournal, 2014;2014:793414.
    PMID: 24587752 DOI: 10.1155/2014/793414
    Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1+ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode.
    Matched MeSH terms: Binding Sites/physiology
  6. Ng SM, Narayanaswamy R
    Anal Chim Acta, 2011 Oct 10;703(2):226-33.
    PMID: 21889638 DOI: 10.1016/j.aca.2011.07.032
    Despite the increasing number of usage of molecularly imprinted polymers (MIPs) in optical sensor application, the correlation between the analytical signals and the binding isotherms has yet to be fully understood. This work investigates the relationship between the signals generated from MIPs sensors to its respective binding affinity variables generated using binding isotherm models. Two different systems based on the imprinting of metal ion and organic compound have been selected for the study, which employed reflectance and fluorescence sensing schemes, respectively. Batch binding analysis using the standard binding isotherm models was employed to evaluate the affinity of the binding sites. Evaluation using the discrete bi-Langmuir isotherm model found both the MIPs studied have generally two classes of binding sites that was of low and high affinities, while the continuous Freundlich isotherm model has successfully generated a distribution of affinities within the investigated analytical window. When the MIPs were incorporated as sensing receptors, the changes in the analytical signal due to different analyte concentrations were found to have direct correlation with the binding isotherm variables. Further data analyses based on this observation have generated robust models representing the analytical performance of the optical sensors. The best constructed model describing the sensing trend for each of the sensor has been tested and demonstrated to give accurate prediction of concentration for a series of spiked analytes.
    Matched MeSH terms: Binding Sites
  7. Mohamad SB, Ong AL, Ripen AM
    Bioinformation, 2008 Jun 18;2(9):369-72.
    PMID: 18795108
    Laccase belongs to the family of blue multi-copper oxidases and are capable of oxidizing a wide range of aromatic compounds. Laccases have industrial applications in paper pulping or bleaching and hydrocarbon bioremediation as a biocatalyst. We describe the design of a laccase with broader substrate spectrum in bioremediation. The application of evolutionary trace (ET) analysis of laccase at the ligand binding site for optimal design of the enzyme is described. In this attempt, class specific sites from ET analysis were mapped onto known crystal structure of laccase. The analysis revealed 162PHE as a critical residue in structure function relationship studies.
    Matched MeSH terms: Binding Sites
  8. Kosikova T, Hassan NI, Cordes DB, Slawin AM, Philp D
    J Am Chem Soc, 2015 Dec 30;137(51):16074-83.
    PMID: 26473285 DOI: 10.1021/jacs.5b09738
    Within a small, interconnected reaction network, orthogonal recognition processes drive the assembly and replication of a [2]rotaxane. Rotaxane formation is governed by a central, hydrogen-bonding-mediated binding equilibrium between a macrocycle and a linear component, which associate to give a reactive pseudorotaxane. Both the pseudorotaxane and the linear component undergo irreversible, recognition-mediated 1,3-dipolar cycloaddition reactions with a stoppering maleimide group, forming rotaxane and thread, respectively. As a result of these orthogonal recognition-mediated processes, the rotaxane and thread can act as auto-catalytic templates for their own formation and also operate as cross-catalytic templates for each other. However, the interplay between the recognition and reaction processes in this reaction network results in the formation of undesirable pseudorotaxane complexes, causing thread formation to exceed rotaxane formation in the current experimental system. Nevertheless, in the absence of competitive macrocycle-binding sites, realization of a replicating network favoring formation of rotaxane is possible.
    Matched MeSH terms: Binding Sites
  9. Zahirul Kabir M, Tayyab H, Erkmen C, Kurbanoglu S, Mohamad SB, Uslu B
    PMID: 36470090 DOI: 10.1016/j.saa.2022.122197
    Interactive association of an antifungal drug, climbazole (CBZ) with the carrier protein in bovine circulation, bovine serum albumin (BSA) was explored by fluorescence and absorption spectroscopy along with in silico techniques. The fluorescence and absorption spectral alterations of the protein upon addition of CBZ affirmed the complex foration between CBZ and BSA. The inverse temperature dependence behaviour of the KSV values as well as the hyperchromic result of the protein's absorption signals characterized CBZ-triggered quenching of BSA fluorescence as the static quenching. A weak binding affinity (Ka = 3.12-1.90-× 103 M-1) was reported towards the CBZ-BSA association process. Interpretation of thermodynamic data (entropy change = +14.68 J mol-1 K-1 and enthalpy change = -15.07 kJ mol-1) and in silico analyses anticipated that hydrophobic forces, van der Waals forces and hydrogen bonds were the key intermolecular forces in the complex stabilization. Inclusion of CBZ to BSA produced microenvironmental perturbations around Tyr and Trp residues, and also significantly defended temperature-induced destabilization of BSA. The binding locus of CBZ was detected in the proximity of Sudlow's sites I (subdomain IIA) and II (subdomain IIIA) of BSA, exhibiting greater preference towards site II, as revealed by competitive site-marker displacement investigations and in silico analysis. The stability of the CBZ-BSA complex was further validated by the molecular dynamics simulation assessments.
    Matched MeSH terms: Binding Sites
  10. Asngari NJM, Bakar KA, Feroz SR, Razak FA, Halim AAA
    Biophys Chem, 2024 Feb;305:107140.
    PMID: 38118338 DOI: 10.1016/j.bpc.2023.107140
    Odanacatib (ODN) is a selective cathepsin K inhibitor that acts as an anti-resorptive agent to treat osteoporosis. ODN is also found effective in reducing the effect of severe periodontitis. The interaction between ODN and human serum albumin (HSA) was investigated using spectroscopic, microscopic, and in silico approaches to characterize their binding. The fluorescence intensity of HSA increased upon the addition of increasing concentrations of ODN accompanied by blueshift in the fluorescence spectrum, which suggested hydrophobic formation around the microenvironment of the fluorophores upon ODN binding. A moderate binding affinity was obtained for ODN-HSA binding, with binding constant (Ka) values of ∼104 M-1. Circular dichroism results suggested that the overall secondary and tertiary structures of HSA were both only slightly altered upon ODN binding. The surface morphology of HSA was also affected upon ODN binding, showing aggregate formation. Drug displacement and molecular docking results revealed that ODN preferably binds to site III in subdomain IB of HSA, while molecular dynamics simulations indicated formation of a stable protein complex when site III was occupied by ODN. The ODN-HSA complex was mainly stabilized by a combination of hydrogen bonding, hydrophobic interactions, and van der Waals forces. These findings provide additional information to understand the interaction mechanism of ODN in blood circulation and may help in future improvements on the adverse effects of ODN.
    Matched MeSH terms: Binding Sites
  11. Rehman F, Abubakar M, Ridzwan NFW, Mohamad SB, Abd Halim AA, Tayyab S
    PMID: 38061108 DOI: 10.1016/j.saa.2023.123641
    The binding mode of antineoplastic antimetabolite, floxuridine (FUDR), with human serum albumin (HSA), the leading carrier in blood circulation, was ascertained using multi-spectroscopic, microscopic, and computational techniques. A static fluorescence quenching was established due to decreased Ksv values with rising temperatures, suggesting FUDR-HSA complexation. UV-vis absorption spectral results also supported this conclusion. The binding constant, Ka values, were found within 9.7-7.9 × 103 M-1 at 290, 300, and 310 K, demonstrating a moderate binding affinity for the FUDR-HSA system. Thermodynamic data (ΔS = +46.35 J.mol-1.K-1 and ΔH = -8.77 kJ.mol-1) predicted the nature of stabilizing forces (hydrogen-bonds, hydrophobic, and van der Waals interactions) for the FUDR-HSA complex. Circular dichroism spectra displayed a minor disruption in the protein's 2° and 3° structures. At the same time, atomic force microscopy images proved variations in the FUDR-HSA surface morphology, confirming its complex formation. The protein's microenvironment around Trp/Tyr residues was also modified, as judged by 3-D fluorescence spectra. FUDR-bound HSA showed better resistance against thermal stress. As disclosed from ligand displacement studies, the FUDR binding site was placed in subdomain IIA (Site I). Further, the molecular docking analysis corroborated the competing displacement studies. Molecular dynamics evaluations revealed that the complex achieved equilibrium during simulations, confirming the FUDR-HSA complex's stability.
    Matched MeSH terms: Binding Sites
  12. Tan SY, Acquah C, Sidhu A, Ongkudon CM, Yon LS, Danquah MK
    Crit Rev Anal Chem, 2016 Nov;46(6):521-37.
    PMID: 26980177 DOI: 10.1080/10408347.2016.1157014
    The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.
    Matched MeSH terms: Binding Sites
  13. Abubakar M, Mohamed SB, Abd Halim AA, Tayyab S
    PMID: 36868020 DOI: 10.1016/j.saa.2023.122543
    This study explores the plausible molecular interaction between a potent hepatitis C virus inhibitor, PSI-6206 (PSI), and human serum albumin (HSA), a primary transporter in blood plasma. Results obtained from both computational viz. molecular docking and molecular dynamics (MD) simulation and wet lab techniques such as UV absorption, fluorescence, circular dichroism (CD), and atomic force microscopy (AFM) complemented each other. While docking results identified PSI binding to subdomain IIA (Site I) of HSA by forming six hydrogen bonds, MD simulations signified the complex stability throughout the 50,000 ps. A consistent cutback in the Stern-Volmer quenching constant (Ksv) along with rising temperatures supported the static mode of fluorescence quenching in response to PSI addition and implied the development of the PSI-HSA complex. This discovery was backed by the alteration of the HSA UV absorption spectrum, a larger value (>1010 M-1.s-1) of the bimolecular quenching rate constant (kq) and the AFM-guided swelling of the HSA molecule, in the presence of PSI. Moreover, the fluorescence titration results revealed a modest binding affinity (4.27-6.25×103 M-1) in the PSI-HSA system, involving hydrogen bonds, van der Waals and hydrophobic interactions, as inferred from ΔS = + 22.77 J mol-1 K-1 and ΔH = - 11.02 KJ mol-1values. CD and 3D fluorescence spectra reminded significant adjustment in the 2° and 3° structures and modification in the Tyr/Trp microenvironment of the protein in the PSI-bound state. The results obtained from drug competing experiments also advocated the binding location of PSI in HSA as Site I.
    Matched MeSH terms: Binding Sites
  14. Kraevsky SV, Barinov NA, Morozova OV, Palyulin VV, Kremleva AV, Klinov DV
    Int J Mol Sci, 2023 Jun 06;24(12).
    PMID: 37372975 DOI: 10.3390/ijms24129827
    In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.
    Matched MeSH terms: Binding Sites
  15. Duman B, Erkmen C, Zahirul Kabir M, Ching Yi L, Mohamad SB, Uslu B
    PMID: 37257323 DOI: 10.1016/j.saa.2023.122907
    Binding mechanisms of two selected pesticides, propazine (PRO) and quinoxyfen (QUI) with bovine serum albumin (BSA) was examined using fluorescence, absorption and molecular docking methods. Intrinsic fluorescence of BSA was quenched in the presence of both PRO and QUI. The quenching was ascertained to be conversely linked to temperature, which suggested the contribution of static quenching process in the PRO-BSA and QUI-BSA complex formations. This results were validated by the enhancement in absorption spectrum of BSA upon binding with PRO and QUI. Binding constant values (Kf = 9.55-0.60 × 10-3 M-1 for PRO-BSA system; Kf = 7.08-5.01 × 102 M-1 for QUI-BSA system) and number of binding site (n) values for the PRO-BSA and QUI-BSA systems at different temperatures affirmed a weak binding strength with a set of equivalent binding sites on BSA. Thermodynamic data obtained for both the PRO-BSA and QUI-BSA interactions predicted that the association process was spontaneous and non-covalent contacts such as hydrophobic interactions, van der Waals forces and hydrogen bonds participated in the binding reactions. This result was further supported by the molecular docking assessments. Three-dimensional spectral results revealed the microenvironmental alterations near tryptophan (Trp) and tyrosine (Tyr) residues in BSA by the addition of PRO and QUI. The docking analysis demonstrated the binding pattern for the PRO-BSA and QUI-BSA systems and disclosed the preferred binding site of both PRO and QUI as site I (subdomain IIA) of BSA.
    Matched MeSH terms: Binding Sites
  16. Hussein MA, Guan TS, Haque RA, Khadeer Ahamed MB, Abdul Majid AM
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1335-48.
    PMID: 25456676 DOI: 10.1016/j.saa.2014.10.021
    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.
    Matched MeSH terms: Binding Sites/drug effects
  17. Elengoe A, Hamdan S
    Interdiscip Sci, 2017 Dec;9(4):478-498.
    PMID: 27517798 DOI: 10.1007/s12539-016-0181-8
    In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.
    Matched MeSH terms: Binding Sites/genetics
  18. Abd Rahman RN, Ali MS, Sugiyama S, Leow AT, Inoue T, Basri M, et al.
    Protein Pept Lett, 2015;22(2):173-9.
    PMID: 25329331
    Geobacillus zalihae sp. nov., which produces a putative thermostable lipase, represents a novel species, with type strain T1. The characterisation of this intrinsically thermostable T1 lipase either physicochemically or structurally is an important task. The crystallisation of T1lipase in space was carried out using a High-Density Protein Crystal Growth (HDPCG) apparatus with the vapour diffusion method, and X-ray diffraction data were collected. The microgravity environment has improved the size and quality of the crystals as compared to earth grown crystal. The effect of microgravity on the crystallisation of T1 lipase was clearly evidenced by the finer atomic details at 1.35 A resolution. Better electron densities were observed overall compared with the Earth-grown crystals, and comparison shows the subtle but distinct conformations around Na(+) ion binding site stabilized via cation-π interactions. This approach could be useful for solving structure and function of lipases towards exploiting its potentials to various industrial applications.
    Matched MeSH terms: Binding Sites
  19. Hong W, Wang Y, Chang Z, Yang Y, Pu J, Sun T, et al.
    Sci Rep, 2015;5:15328.
    PMID: 26471125 DOI: 10.1038/srep15328
    It is an urgent need to develop new drugs for Mycobacterium tuberculosis (Mtb), and the enzyme, dihydrofolate reductase (DHFR) is a recognised drug target. The crystal structures of methotrexate binding to mt- and h-DHFR separately indicate that the glycerol (GOL) binding site is likely to be critical for the function of mt-DHFR selective inhibitors. We have used in silico methods to screen NCI small molecule database and a group of related compounds were obtained that inhibit mt-DHFR activity and showed bactericidal effects against a test Mtb strain. The binding poses were then analysed and the influence of GOL binding site was studied by using molecular modelling. By comparing the chemical structures, 4 compounds that might be able to occupy the GOL binding site were identified. However, these compounds contain large hydrophobic side chains. As the GOL binding site is more hydrophilic, molecular modelling indicated that these compounds were failed to occupy the GOL site. The most potent inhibitor (compound 6) demonstrated limited selectivity for mt-DHFR, but did contain a novel central core (7H-pyrrolo[3,2-f]quinazoline-1,3-diamine), which may significantly expand the chemical space of novel mt-DHFR inhibitors. Collectively, these observations will inform future medicinal chemistry efforts to improve the selectivity of compounds against mt-DHFR.
    Matched MeSH terms: Binding Sites
  20. Arockiaraj J, Bhatt P, Kumaresan V, Dhayanithi NB, Arshad A, Harikrishnan R, et al.
    Fish Shellfish Immunol, 2015 Nov;47(1):221-30.
    PMID: 26363233 DOI: 10.1016/j.fsi.2015.09.015
    In this study, we reported a molecular characterization of three CC chemokines namely, CsCC-Chem14, CsCC-Chem20 and CsCC-Chem25 which are were identified from the established cDNA library of striped murrel Channa striatus. Multiple sequence alignment of all the three chemokines revealed the presence of gene specific domains and motifs including small cytokine domain, IL8 like domain, receptor binding site and glycosaminoglycan (GAG) binding sites. Three dimensional structures of the chemokines under study showed an important facet on their anti-microbial property. Tissue specific mRNA expression showed that the CsCC-Chem14 is highly expressed in spleen, CsCC-Chem20 in liver and CsCC-Chem25 in trunk kidney. On challenge C. striatus with oomycete fungus Aphanomyces invadans, both CsCC-Chem20 and CsCC-Chem25 showed significant (P < 0.05) up-regulation compared to CsCC-Chem14. The increase in the expression levels of CsCC-Chem20 and CsCC-Chem25 due to infection showed that they are antimicrobial proteins. But considering the CsCC-Chem14 expression, it is found to be a constitutive chemokine and is involved in homeostatic function in spleen of C. striatus. C. striatus challenged with bacteria Aeromonas hydrophila also exhibited different up-regulation pattern in all the three chemokines at various time points. However, extensive studies are required to determine the functional activities of CsCC-Chem14, CsCC-Chem20 and CsCC-Chem25 in vitro and in vivo to gain more knowledge at the molecular and proteomic levels.
    Matched MeSH terms: Binding Sites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links