Chiroptical activity is observed from an achiral adenine-containing metal-organic framework (MOF) named ZnFDCA. Such a seemingly counterintuitive phenomenon can, in fact, be predicted by the intrinsic crystal symmetry of 4̅2 m point group. Although theoretically allowed, examples of optically active achiral crystals are extremely rare. ZnFDCA is the first reported achiral MOF showing optical activity, as demonstrated by a pair of circular dichroism signals with opposite signs and enhanced intensity. Moreover, simply through adding an amino substituent to adenine, the chiroptical activity, as well as nonlinear optical activity, of the analogous MOF, namely ZnFDCA-NH2, disappears due to diverse packing pattern giving rise to centrosymmetric crystal symmetry.
Within a small, interconnected reaction network, orthogonal recognition processes drive the assembly and replication of a [2]rotaxane. Rotaxane formation is governed by a central, hydrogen-bonding-mediated binding equilibrium between a macrocycle and a linear component, which associate to give a reactive pseudorotaxane. Both the pseudorotaxane and the linear component undergo irreversible, recognition-mediated 1,3-dipolar cycloaddition reactions with a stoppering maleimide group, forming rotaxane and thread, respectively. As a result of these orthogonal recognition-mediated processes, the rotaxane and thread can act as auto-catalytic templates for their own formation and also operate as cross-catalytic templates for each other. However, the interplay between the recognition and reaction processes in this reaction network results in the formation of undesirable pseudorotaxane complexes, causing thread formation to exceed rotaxane formation in the current experimental system. Nevertheless, in the absence of competitive macrocycle-binding sites, realization of a replicating network favoring formation of rotaxane is possible.
Exohedral cuprofullerenes with 6-, 12-, or 24-nuclearity were obtained by utilizing fluorocarboxylic/dicarboxylic acid under solvothermal conditions. The 24-nuclear molecule presents a C60@Cu24 core-shell structure with a rhombicuboctahedron Cu24 coated on the C60 core, representing the highest nuclearity in metallofullerene. The resultant complexes show an efficient absorption of visible light as opposed to the pristine C60. TD-DFT calculations revealed the charge transfer from Cu(I) and O atoms to the fullerene moiety dominates the photophysical process.
The binding of imidazolium salts to cucurbit[8]uril, CB[8], triggers a stepwise self-assembly process with semiflexible polymer chains and crystalline nanostructures as early- and late-stage species, respectively. In such a process, which involves the crystallization of the host-guest complexes, the guest plays a critical role in directing self-assembly toward desirable morphologies. These include platelet-like aggregates and two-dimensional (2D) fibers, which, moreover, exhibit viscoelastic and lyotropic properties. Our observations provide a deeper understanding of the self-assembly of CB[8] complexes, with fundamental implications in the design of functional 2D systems and crystalline materials.