APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.
CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.
MATERIALS AND METHODS: This was a retrospective descriptive study. We identified 1041 patients (810 Chinese, 139 Malays, 92 Indians) without previous history of cardiovascular disease who underwent cardiac computed tomography for atypical chest pain evaluation. A cardiologist, who was blinded to the patients' clinical demographics, reviewed all scans. We retrospectively analysed all their case records.
RESULTS: Overall, Malays were most likely to be active smokers (P = 0.02), Indians had the highest prevalence of diabetes mellitus (P = 0.01) and Chinese had the highest mean age (P <0.0001). The overall prevalence of patients with non-calcified plaques as the only manifestation of sub-clinical coronary artery disease was 2.1%. There was no significant difference in the prevalence of CAC, mean CAC score or prevalence of non-calcified plaques among the 3 ethnic groups. Active smoking, age and hypertension were independent predictors of CAC. Non-calcified plaques were positively associated with male gender, age, dyslipidaemia and diabetes mellitus.
CONCLUSION: The higher MI rates in Malays and Indians in Singapore cannot be explained by any difference in CAC or non-calcified plaque. More research with prospective follow-up of larger patient populations is necessary to establish if ethnic-specific calibration of CAC measures is needed to adjust for differences among ethnic groups.