Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Waste Water/microbiology
  2. Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 May 30;173:96-102.
    PMID: 30769208 DOI: 10.1016/j.ecoenv.2019.02.023
    Livestock farms are commonly regarded as the main sources of antibiotic resistance genes (ARGs), emerging pollutants with potential implications for human health, in the environment. This study investigated the occurrence and contamination profiles of nine ARGs of three types from swine manure to receiving environments (soil and water) in Guangdong Province, southern China. All ARGs occurred in 100% of swine manure samples. Moreover, the absolute concentration of total ARGs varied from 3.01 × 108 to 7.18 × 1014 copies/g, which was significantly higher than that in wastewater and manured soil (p  0.05). However, the number of ARGs (ermB, qnrS, acc(6')-Ib, tetM, tetO and tetQ) decreased but were not eliminated by wastewater treatment components (p 
    Matched MeSH terms: Waste Water/microbiology*
  3. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Waste Water/microbiology*
  4. Yee W
    World J Microbiol Biotechnol, 2016 Apr;32(4):64.
    PMID: 26931604 DOI: 10.1007/s11274-016-2023-6
    Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.
    Matched MeSH terms: Waste Water/microbiology
  5. Zulkeflle SNM, Yusaimi YA, Sugiura N, Iwamoto K, Goto M, Utsumi M, et al.
    Microbiology (Reading), 2016 12;162(12):2064-2074.
    PMID: 27902427 DOI: 10.1099/mic.0.000392
    Antibiotic resistance has become a major public health problem throughout the world. The presence of antibiotic-resistant bacteria such as Staphylococcus aureus and antibiotic resistance genes (ARGs) in hospital wastewater is a cause for great concern today. In this study, 276 Staph. aureus isolates were recovered from hospital wastewater samples in Malaysia. All of the isolates were screened for susceptibility to nine different classes of antibiotics: ampicillin, ciprofloxacin, gentamicin, kanamycin, erythromycin, vancomycin, trimethoprim and sulfamethoxazole, chloramphenicol, tetracycline and nalidixic acid. Screening tests showed that 100 % of Staph.aureus isolates exhibited resistance against kanamycin, vancomycin, trimethoprim and sulfamethoxazole and nalidixic acid. Additionally, 91, 87, 50, 43, 11 and 8.7 % of isolates showed resistance against erythromycin, gentamicin, ciprofloxacin, ampicillin, chloramphenicol and tetracycline, respectively. Based on these results, 100 % of isolates demonstrated multidrug-resistant (MDR) characteristics, displaying resistance against more than three classes of antibiotics. Of 276 isolates, nine exhibited resistance to more than nine classes of tested antibiotics; these were selected for antibiotic susceptibility testing and examined for the presence of conserved ARGs. Interestingly, a high percentage of the selected MDR Staph.aureus isolates did not contain conserved ARGs. These results indicate that non-conserved MDR gene elements may have already spread into the environment in the tropics of Southeast Asia, and unique resistance mechanisms against several antibiotics may have evolved due to stable, moderate temperatures that support growth of bacteria throughout the year.
    Matched MeSH terms: Waste Water/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links