Displaying publications 41 - 45 of 45 in total

Abstract:
Sort:
  1. Wahgiman NA, Salim N, Abdul Rahman MB, Ashari SE
    Int J Nanomedicine, 2019;14:7323-7338.
    PMID: 31686809 DOI: 10.2147/IJN.S212635
    Background: Gemcitabine (GEM) is a chemotherapeutic agent, which is known to battle cancer but challenging due to its hydrophilic nature. Nanoemulsion is water-in-oil (W/O) nanoemulsion shows potential as a carrier system in delivering gemcitabine to the cancer cell.

    Methods: The behaviour of GEM in MCT/surfactants/NaCl systems was studied in the ternary system at different ratios of Tween 80 and Span 80. The system with surfactant ratio 3:7 of Tween 80 and Span 80 was chosen for further study on the preparation of nanoemulsion formulation due to the highest isotropic region. Based on the selected ternary phase diagram, a composition of F1 was chosen and used for optimization by using the D-optimal mixture design. The interaction variables between medium chain triglyceride (MCT), surfactant mixture Tween 80: Span 80 (ratio 3:7), 0.9 % sodium chloride solution and gemcitabine were evaluated towards particle size as a response.

    Results: The results showed that NaCl solution and GEM gave more effects on particle size, polydispersity index and zeta potential of 141.57±0.05 nm, 0.168 and -37.10 mV, respectively. The optimized nanoemulsion showed good stability (no phase separation) against centrifugation test and storage at three different temperatures. The in vitro release of gemcitabine at different pH buffer solution was evaluated. The results showed the release of GEM in buffer pH 6.5 (45.19%) was higher than GEM in buffer pH 7.4 (13.62%). The cytotoxicity study showed that the optimized nanoemulsion containing GEM induced cytotoxicity towards A549 cell and at the same time reduced cytotoxicity towards MRC5 when compared to the control (GEM solution).

  2. Yusof R, Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB
    PMID: 33636491 DOI: 10.1016/j.saa.2021.119543
    The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (Kb) between DES and DNA up to 5.75 × 105 kJ mol-1 and decreased the binding of Gibbs energy (ΔGo) to 32.86 kJ mol-1. Through displacement studies, all synthesised DESs have been shown to displace DAPI (4',6-diamidino-2-phenylindole) and were able to bind on the minor groove of Adenine-Thymine (AT)-rich DNA. A higher number of hydroxyl (OH) groups caused the TBABr:Gly to form more hydrogen bonds with DNA bases and had the highest ability to quench DAPI from DNA, with Stern-Volmer constants (Ksv) of 115.16 M-1. This study demonstrated that the synthesised DESs were strongly bound to DNA through a combination of electrostatic, hydrophobic, and groove binding. Hence, DES has the potential to solvate and stabilise nucleic acid structures.
  3. Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E, Rahman RN, et al.
    Biosci Biotechnol Biochem, 2011;75(8):1446-50.
    PMID: 21821960
    The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.
  4. Zakaria F, Tan JK, Mohd Faudzi SM, Abdul Rahman MB, Ashari SE
    Ultrason Sonochem, 2021 Dec;81:105851.
    PMID: 34864545 DOI: 10.1016/j.ultsonch.2021.105851
    The optimisation of the Ultrasound-Assisted Extraction (UAE) method was investigated by employing the Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). The UAE method was based on a simple ultrasound treatment using methanol as the extraction medium to facilitate the cell disruption of Mitragyna speciosa leaves for optimum extraction yield and Total Phenolic Content (TPC). Three different parameters comprising extraction temperature (X1: 25-50 °C), sonication time (X2: 15-50 min), and solvent to solid ratio (X3: 10-30 mL/g), and were selected as the independent variables, while two response variables were selected, namely extraction yield (Y1) and TPC (Y2). Based on the results, the developed quadratic polynomial model correlated with the experimental data is based on the coefficient of determination (R2) of extraction yield (0.9972, p 
  5. Zakaria N, Wan Harun WMRS, Mohammad Latif MA, Azaman SNA, Abdul Rahman MB, Faujan NH
    J Mol Graph Model, 2024 Jun;129:108732.
    PMID: 38412813 DOI: 10.1016/j.jmgm.2024.108732
    Recent evidence from in vitro and in vivo studies has shown that anthocyanins and anthocyanidins can reduce and inhibit the amyloid beta (Aβ) species, one of the hallmarks of Alzheimer's disease (AD). However, their inhibition mechanisms on Aβ species at molecular details remain elusive. Therefore, in the present study, molecular modelling methods were employed to investigate their inhibitory mechanisms on Aβ(1-42) peptide. The results highlighted that anthocyanidins effectively inhibited the conformational transitions of helices into beta-sheet (β-sheet) conformation within Aβ(1-42) peptide by two different mechanisms: 1) the obstruction of two terminals from coming into contact due to the binding of anthocyanidins with residues of N- and second hydrophobic core (SHC)-C-terminals, and 2) the prevention of the folding process due to the binding of anthocyanidin with the central polar (Asp23 and Lys28) and native helix (Asp23, Lys28, and Leu34) residues. These new findings on the inhibition of β-sheet formation by targeting both N- and SHC-C-terminals, and the long-established target, D23-K28 salt bridge residues, not with the conventional central hydrophobic core (CHC) as reported in the literature, might aid in designing more potent inhibitors for AD treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links