The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.