Displaying publications 41 - 60 of 223 in total

Abstract:
Sort:
  1. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Oct 01;73(Pt 10):1595-1598.
    PMID: 29250389 DOI: 10.1107/S2056989017013950
    In the title mol-ecular salt, 2C6H10N3O+·C8H4O42-, the N atom of each of the two 2-amino-4-meth-oxy-6-methyl-pyrimidine mol-ecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8) and 7.95 (8)°. Each of the cations is linked to the anion through a pair of N-H⋯O(carboxyl-ate) hydrogen bonds, forming cyclic R22(8) ring motifs which are then linked through inversion-related N-H⋯O hydrogen bonds, giving a central R24(8) motif. Peripheral amine N-H⋯O hydrogen-bonding inter-actions on either side of the succinate anion, also through centrosymmetric R22(8) extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π-π stacking inter-actions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9) Å]. The inter-molecular inter-actions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.
  2. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1305-1307.
    PMID: 28932461 DOI: 10.1107/S2056989017011252
    In the title mol-ecular salt, C6H10N3O(+)·C7H5O3(-), the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intra-molecular O-H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N-H⋯O hydrogen bonds [R2(2)(8) motif] to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N-H⋯O hydrogen bonds into a tetra-meric DDAA array. The tetra-mers are linked by pairs of C-H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.
  3. Then LY, Chidan Kumar CS, Kwong HC, Win YF, Mah SH, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1227-1231.
    PMID: 28932442 DOI: 10.1107/S2056989017010556
    2-(Benzo-furan-2-yl)-2-oxoethyl 2-chloro-benzoate, C17H11ClO4 (I), and 2-(benzo-furan-2-yl)-2-oxoethyl 2-meth-oxy-benzoate, C18H14O5 (II), were synthesized under mild conditions. Their chemical and mol-ecular structures were analyzed by spectroscopic and single-crystal X-ray diffraction studies, respectively. These compounds possess different ortho-substituted functional groups on their phenyl rings, thus experiencing extra steric repulsion force within their mol-ecules as the substituent changes from 2-chloro (I) to 2-meth-oxy (II). The crystal packing of compound (I) depends on weak inter-molecular hydrogen bonds and π-π inter-actions. Mol-ecules are related by inversion into centrosymmetric dimers via C-H⋯O hydrogen bonds, and further strengthened by π-π inter-actions between furan rings. Conversely, mol-ecules in compound (II) are linked into alternating dimeric chains propagating along the [101] direction, which develop into a two-dimensional plate through extensive inter-molecular hydrogen bonds. These plates are further stabilized by π-π and C-H⋯π inter-actions.
  4. Chidan Kumar CS, Sim AJ, Ng WZ, Chia TS, Loh WS, Kwong HC, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 7):927-931.
    PMID: 28775853 DOI: 10.1107/S2056989017007836
    The asymmetric unit of the title compound, C15H15N3O3·0.5H2O, comprises two 2-{[(4-iminiumyl-3-methyl-1,4-di-hydro-pyridin-1-yl)meth-yl]carbamo-yl}benzoate zwitterions (A and B) and a water mol-ecule. The dihedral angles between the pyridine and phenyl rings in the zwitterions are 53.69 (10) and 73.56 (11)° in A and B, respectively. In the crystal, mol-ecules are linked by N-H⋯O, O-H⋯O, C-H⋯O and C-H⋯π(ring) hydrogen bonds into a three-dimensional network. The crystal structure also features π-π inter-actions involving the centroids of the pyridine and phenyl rings [centroid-centroid distances = 3.5618 (12) Å in A and 3.8182 (14) Å in B].
  5. Rahman WSKA, Ahmad J, Halim SNA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1363-1367.
    PMID: 28932475 DOI: 10.1107/S2056989017011677
    The full mol-ecule of the binuclear title compound, [Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2], is generated by the application of a centre of inversion located at the middle of the central CH2-CH2 bond of the adipate dianion; the latter chelates a CdII atom at each end. Along with two carboxyl-ate-O atoms, the CdII ion is coordinated by the two N atoms of the chelating benzene-1,2-di-amine ligand, a Cl- anion and an aqua ligand to define a distorted octa-hedral CdClN2O3 coordination geometry with the monodentate ligands being mutually cis. The disparity in the Cd-N bond lengths is related to the relative trans effect exerted by the Cd-O bonds formed by the carboxyl-ate-O and aqua-O atoms. The packing features water-O-H⋯O(carboxyl-ate) and benzene-1,2-di-amine-N-H⋯Cl hydrogen bonds, leading to layers that stack along the a-axis direction. The lack of directional inter-actions between the layers is confirmed by a Hirshfeld surface analysis.
  6. Poplaukhin P, Arman HD, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1162-1166.
    PMID: 28932428 DOI: 10.1107/S2056989017010179
    The title compound, {[Zn(C9H11N2S2)2]·0.5C6H7N} n , comprises two independent, but chemically similar, Zn[S2CN(Et)CH2py]2 residues and a 4-methyl-pyridine solvent mol-ecule in the asymmetric unit. The Zn-containing units are connected into a one-dimensional coordination polymer (zigzag topology) propagating in the [010] direction, with one di-thio-carbamate ligand bridging in a μ2-κ(3) mode, employing one pyridyl N and both di-thio-carbamate S atoms, while the other is κ(2)-chelating. In each case, the resultant ZnNS4 coordination geometry approximates a square pyramid, with the pyridyl N atom in the apical position. In the crystal, the chains are linked into a three-dimensional architecture by methyl- and pyridyl-C-H⋯S, methyl-ene-C-H⋯N(pyrid-yl) and pyridyl-C-H⋯π(ZnS2C) inter-actions. The connection between the chain and the 4-methyl-pyridine solvent mol-ecule is of the type pyridyl-C-H⋯N(4-methyl-pyridine).
  7. Shawkataly OB, Sirat SS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Nov 01;73(Pt 11):1652-1657.
    PMID: 29152343 DOI: 10.1107/S2056989017014517
    In the title cluster complex hexane solvate, [Ru6(C30H32P2)(CO)22]·C6H14, two Ru3(CO)11 fragments are linked by a Ph2P(CH2)6PPh2 bridge with the P atoms equatorially disposed with respect to the Ru3 triangle in each case; the hexane solvent mol-ecule is statistically disordered. The Ru⋯Ru distances span a relatively narrow range, i.e. 2.8378 (4) to 2.8644 (4) Å. The hexyl chain within the bridge has an all-trans conformation. In the mol-ecular packing, C-H⋯O inter-actions between cluster mol-ecules, and between cluster and hexane solvent mol-ecules lead to a three-dimensional architecture. In addition, there are a large number of C≡O⋯π(arene) inter-actions in the crystal. The importance of the carbonyl groups in establishing the packing is emphasized by the contribution of 53.4% to the Hirshfeld surface by O⋯H/H⋯O contacts.
  8. Chia TS, Kwong HC, Wong QA, Quah CK, Arafath MA
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):8-11.
    PMID: 30713724 DOI: 10.1107/S2056989018016900
    A new polymorphic form of the title compound, C8H8O3, is described in the centrosymmetric monoclinic space group P21/c with Z' = 1 as compared to the first polymorph, which crystallizes with two conformers (Z' = 2) in the asymmetric unit in the same space group. In the crystal of the second polymorph, inversion dimers linked by O-H⋯O hydrogen bonds occur and these are linked into zigzag chains, propagating along the b-axis direction by C-H⋯O links. The crystal structure also features a weak π-π inter-action, with a centroid-to-centroid distance of 3.8018 (6) Å. The second polymorph of the title compound is less stable than the reported first polymorph, as indicated by its smaller calculated lattice energy.
  9. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):1-7.
    PMID: 30713723 DOI: 10.1107/S2056989018017097
    The asymmetric unit of the title 1:2 co-crystal, C14H10O4S2·2C7H6O2, comprises half a mol-ecule of di-thiodi-benzoic acid [systematic name: 2-[(2-carb-oxy-phen-yl)disulfan-yl]benzoic acid, DTBA], as the mol-ecule is located about a twofold axis of symmetry, and a mol-ecule of benzoic acid (BA). The DTBA mol-ecule is twisted about the di-sulfide bond [the C-S-S-C torsion angle is -83.19 (8)°] resulting in a near perpendicular relationship between the benzene rings [dihedral angle = 71.19 (4)°]. The carb-oxy-lic acid group is almost co-planar with the benzene ring to which it is bonded [dihedral angle = 4.82 (12)°]. A similar near co-planar relationship pertains for the BA mol-ecule [dihedral angle = 3.65 (15)°]. Three-mol-ecule aggregates are formed in the crystal whereby two BA mol-ecules are connected to a DTBA mol-ecule via hy-droxy-O-H⋯O(hydroxy) hydrogen bonds and eight-membered {⋯HOC=O}2 synthons. These are connected into a supra-molecular layer in the ab plane through C-H⋯O inter-actions. The inter-actions between layers to consolidate the three-dimensional architecture are π-π stacking inter-actions between DTBA and BA rings [inter-centroid separation = 3.8093 (10) Å] and parallel DTBA-hy-droxy-O⋯π(BA) contacts [O⋯ring centroid separation = 3.9049 (14) Å]. The importance of the specified inter-actions as well as other weaker contacts, e.g. π-π and C-H⋯S, are indicated in the analysis of the calculated Hirshfeld surface and inter-action energies.
  10. Wong QA, Chia TS, Kwong HC, Chidan Kumar CS, Quah CK, Arafath MA
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):53-57.
    PMID: 30713733 DOI: 10.1107/S2056989018017450
    The mol-ecular structure of the title chalcone derivative, C15H10FNO3, is nearly planar and the mol-ecule adopts a trans configuration with respect to the C=C double bond. The nitro group is nearly coplanar with the attached benzene ring, which is nearly parallel to the second benzene ring. In the crystal, mol-ecules are connected by pairs of weak inter-molecular C-H⋯O hydrogen bonds into inversion dimers. The dimers are further linked by another C-H⋯O hydrogen bond and a C-H⋯F hydrogen bond into sheets parallel to (104). π-π inter-actions occur between the sheets, with a centroid-centroid distance of 3.8860 (11) Å. Hirshfeld surface analysis was used to investigate and qu-antify the inter-molecular inter-actions.
  11. Adam F, Arafath MA, Rosenani AH, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o971-2.
    PMID: 26870556 DOI: 10.1107/S2056989015021180
    In the mol-ecule of the title compound, C21H17N3O2, the 5,6-di-hydro-benzimidazo[1,2-c]quinazoline moiety is disordered over two orientations about a pseudo-mirror plane, with a refined occupancy ratio of 0.863 (2):0.137 (2). The dihedral angles formed by the benzimidazole ring system and the benzene ring of the quinazoline group are 14.28 (5) and 4.7 (3)° for the major and minor disorder components, respectively. An intra-molecular O-H⋯O hydrogen bond is present. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds, forming chains running parallel to [10-1].
  12. Safbri SA, Halim SN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Feb 1;72(Pt 2):203-8.
    PMID: 26958388 DOI: 10.1107/S2056989016000700
    The common feature of the title compounds, [Zn(C5H10NO2S2)2(C10H8N2)]·2H2O, (I), and [Zn(C6H12NOS2)2(C10H8N2)], (II), is the location of the Zn(II) atoms on a twofold rotation axis. Further, each Zn(II) atom is chelated by two symmetry-equivalent and symmetrically coordinating di-thio-carbamate ligands and a 2,2'-bi-pyridine ligand. The resulting N2S4 coordination geometry is based on a highly distorted octa-hedron in each case. In the mol-ecular packing of (I), supra-molecular ladders mediated by O-H⋯O hydrogen bonding are found whereby the uprights are defined by {⋯HO(water)⋯HO(hy-droxy)⋯} n chains parallel to the a axis and with the rungs defined by 'Zn[S2CN(CH2CH2)2]2'. The water mol-ecules connect the ladders into a supra-molecular layer parallel to the ab plane via water-O-H⋯S and pyridyl-C-H⋯O(water) inter-actions, with the connections between layers being of the type pyridyl-C-H⋯S. In (II), supra-molecular layers parallel to the ab plane are sustained by hy-droxy-O-H⋯S hydrogen bonds with connections between layers being of the type pyridyl-C-H⋯S.
  13. Safbri SA, Halim SN, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Feb 1;72(Pt 2):158-63.
    PMID: 26958378 DOI: 10.1107/S2056989016000165
    The title compound, [Cd(C6H12NOS2)2(C4H10N2)], features a distorted square-pyramidal coordination geometry about the central Cd(II) atom. The di-thio-carbamate ligands are chelating, forming similar Cd-S bond lengths and define the approximate basal plane. One of the N atoms of the piperazine mol-ecule, which adopts a chair conformation, occupies the apical site. In the crystal, supra-molecular layers propagating in the ac plane are formed via hy-droxy-O-H⋯O(hy-droxy), hy-droxy-O-H⋯N(terminal-piperazine) and coordinated-piperazine-N-H⋯O(hy-droxy) hydrogen bonds; the layers also feature methine-C-H⋯S inter-actions and S⋯S [3.3714 (10) Å] short contacts. The layers stack along the b-axis direction with very weak terminal-piperazine-N-H⋯O(hy-droxy) inter-actions between them. An evaluation of the Hirshfeld surfaces confirms the importance of inter-molecular inter-actions involving oxygen and sulfur atoms.
  14. Hassan NH, Abdullah AA, Arshad S, Khalib NC, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2016 May 1;72(Pt 5):716-9.
    PMID: 27308026 DOI: 10.1107/S2056989016006526
    In the title chalcone derivative, C16H11ClF2O2, the enone group adopts an E conformation. The dihedral angle between the benzene rings is 0.47 (9)° and an intra-molecular C-H⋯F hydrogen bond closes an S(6) ring. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯O hydrogen bonds and aromatic π-π stacking inter-actions are also observed [centroid-centroid separation = 3.5629 (18) Å]. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.
  15. Abdullah AA, Hassan NH, Arshad S, Khalib NC, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2016 May 1;72(Pt 5):648-51.
    PMID: 27308010 DOI: 10.1107/S2056989016005028
    In the title compound, C23H14ClFO, the enone moiety adopts an E conformation. The dihedral angle between the benzene and anthracene ring is 63.42 (8)° and an intra-molecular C-H⋯F hydrogen bond generates an S(6) ring motif. In the crystal, mol-ecules are arranged into centrosymmetric dimers via pairs of C-H⋯F hydrogen bonds. The crystal structure also features C-H⋯π and π-π inter-actions. Hirshfeld surface analysis was used to confirm the existence of inter-molecular inter-actions.
  16. Harrison WT, Plater MJ, Yin LJ
    Acta Crystallogr E Crystallogr Commun, 2016 Mar 1;72(Pt 3):407-11.
    PMID: 27006818 DOI: 10.1107/S2056989016002942
    The title compounds, C14H12O, (I), and C15H11BrO2, (II), were prepared and characterized as part of our studies of potential new photo-acid generators. In (I), which crystallizes in the ortho-rhom-bic space group Pca21, compared to P21/n for the previously known monoclinic polymorph [Cornella & Martin (2013 ▸). Org. Lett. 15, 6298-6301], the dihedral angle between the aromatic rings is 4.35 (6)° and the OH group is disordered over two sites in a 0.795 (3):0.205 (3) ratio. In the crystal of (I), mol-ecules are linked by O-H⋯π inter-actions involving both the major and minor -OH disorder components, generating [001] chains as part of the herringbone packing motif. The asymmetric unit of (II) contains two mol-ecules with similar conformations (weighted r.m.s. overlay fit = 0.183 Å). In the crystal of (II), both mol-ecules form carboxyl-ate inversion dimers linked by pairs of O-H⋯O hydrogen bonds, generating R 2 (2)(8) loops in each case. The dimers are linked by pairs of C-H⋯O hydrogen bonds to form [010] chains.
  17. Syed S, Jotani MM, Halim SN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Mar 1;72(Pt 3):391-8.
    PMID: 27006815 DOI: 10.1107/S2056989016002735
    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol-ecule in a general position and half a di-amide mol-ecule, the latter being located about a centre of inversion. In the acid, the carb-oxy-lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol-ecule [hy-droxy-O-C-C-C(H) torsion angle = -27.92 (17)°]. In the di-amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol-ecular packing, three-mol-ecule aggregates are formed via hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds. These are connected into a supra-molecular layer parallel to (12[Formula: see text]) via amide-N-H⋯O(carbon-yl) hydrogen bonds, as well as methyl-ene-C-H⋯O(amide) inter-actions. Significant π-π inter-actions occur between benzene/benzene, pyrid-yl/benzene and pyrid-yl/pyridyl rings within and between layers to consolidate the three-dimensional packing.
  18. Lee SL, Tan AL, Young DJ, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Jun 1;72(Pt 6):849-53.
    PMID: 27308057 DOI: 10.1107/S205698901600832X
    The title compound, C13H10N2O2 [also called 1-(pyridin-2-yl)-3-(pyridin-3-yl)propane-1,3-dione], features an almost planar (r.m.s. deviation = 0.0095 Å) central C3O2 core consolidated by an intra-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bond. Twists are evident in the mol-ecule, as seen in the dihedral angles between the central core and the 2- and pyridin-3-yl rings of 8.91 (7) and 15.88 (6)°, respectively. The conformation about the C=C bond [1.3931 (17) Å] is Z, and the N atoms lie to the same side of the mol-ecule. In the mol-ecular packing, supra-molecular chains along the a axis are mediated by π(pyridin-2-yl)-π(pyridin-3-yl) inter-actions [inter-centroid distance = 3.7662 (9) Å]. The observation that chains pack with no directional inter-actions between them is consistent with the calculated electrostatic potential, which indicates that repulsive inter-actions dominate.
  19. Kadir FK, Shamsuddin M, Rosli MM
    Acta Crystallogr E Crystallogr Commun, 2016 May 1;72(Pt 5):760-3.
    PMID: 27308036 DOI: 10.1107/S2056989016006873
    In the asymmetric unit of the title complex, [Ni(C16H14N3OS)2], the nickel ion is tetra-coordinated in a distorted square-planar geometry by two independent mol-ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C=N bonds. The close approach of hydrogen atoms to the Ni(2+) atom suggests anagostic inter-actions (Ni⋯H-C) are present. The crystal structure is built up by a network of two C-H⋯O inter-actions. One of the inter-actions forms inversion dimers and the other links the mol-ecules into infinite chains parallel to [100]. In addition, a weak C-H⋯π inter-action is also present.
  20. Yeo CI, Tan SL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Aug 1;72(Pt 8):1068-73.
    PMID: 27536384 DOI: 10.1107/S2056989016010781
    The title compound, [Au(C8H7ClNOS)(C18H15P)], is a monoclinic (P21/n, Z' = 1; form β) polymorph of the previously reported triclinic form (P-1, Z' = 1; form α) [Tadbuppa & Tiekink (2010 ▸). Acta Cryst. E66, m664]. The mol-ecular structures of both forms feature an almost linear gold(I) coordination geometry [P-Au-S = 175.62 (5)° in the title polymorph], being coordinated by thiol-ate S and phosphane P atoms, a Z conformation about the C=N bond and an intra-molecular Au⋯O contact. The major conformational difference relates to the relative orientations of the residues about the Au-S bond: the P-Au-S-C torsion angles are -8.4 (7) and 106.2 (7)° in forms α and β, respectively. The mol-ecular packing of form β features centrosymmetric aggregates sustained by aryl-C-H⋯O inter-actions, which are connected into a three-dimensional network by aryl-C-H⋯π contacts. The Hirshfeld analysis of forms α and β shows many similarities with the notable exception of the influence of C-H⋯O inter-actions in form β.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links